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ABSTRACT

Optical interrogation and manipulation of neural dynamics is a cornerstone of

systems neuroscience. Genetic targeting enable delivering fluorescent indicators and

opsins to specific neural subpopulations. Optic probes can fluorescently sense and

convey calcium, voltage, and neurotransmitter dynamics. This optical toolkit enables

recording and perturbing cellular-resolution activity in thousands of neurons across

a field of view.

Yet these techniques are limited by the light scattering properties of tissues. The

cutting edge of microscopy, three-photon imaging, can record from intact tissues at

depths up to 1 mm, but requires head-fixed experimental paradigms. To access deeper

layers and non-cortical structures, researchers rely on optical implants, such as GRIN

lenses or prisms, or the removal of superficial tissue.

In this thesis, we introduce a novel implant for interfacing with deep brain regions

constructed from bundles of hundreds or thousands of dissociated, small diameter

(<8 µm) optical fibers. During insertion into the tissue, the fibers move independently,

splaying through the target region. Each fiber achieves near total internal reflection,
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acting as a bidirectional optical interface with a small region of tissue near the fiber

aperture.

The small diameter and flexibility of the fibers minimize tissue response, preserv-

ing local connectivity and circuit dynamics. Histology and immunohistochemistry

from implants into zebra finch basal ganglia (depth 2.9 mm) show the splaying of the

fibers and the presence of NeuN-stained cells in close proximity to the fiber tips.

By modeling the optical properties of the fibers and tissue, we simulate the inter-

face properties of a bundle of fibers. Overlap in the sensitivity between nearby fibers

allows application of blind source separation to extract individual neural traces. We

describe a nonnegative independent component analysis algorithm especially suited

to the interface.

Finally, experimental data from implants in transgenic mice yield proof of principle

recordings during both cortical spreading depolarization and forepaw stimulation.

Collectively, the data presented here paint a compelling picture of splaying mi-

crofibers as a deep brain interface capable of sampling or perturbing neural activity

at hundreds or thousands of points throughout a 3D volume of tissue while eliciting

less response than existing optical implants.
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Chapter 1

Introduction

Optical techniques have been a pivotal tool in the process of observing and manip-

ulating neural activity, achieving a stable interface for interacting with cells over a

large field of view, thanks in large part to the genetic probes that enable resolving

individual neural contributions (Emiliani et al., 2015). Novel genetic probes, such as

voltage indicators, are only broadening the questions that can be answered via op-

tical techniques by achieving greater temporal resolution and revealing subthreshold

activity (Gong et al., 2015).

Despite these strengths, optical techniques are severely constrained by light scat-

tering. In response to the limitations of scattering, a number of innovative approaches

have been developed, with varying tradeo↵s in terms of quality and feasibility. Multi-

photon microscopy techniques enable imaging up to 1 mm below the surface, but

require animals to be head-fixed and hence limit behavior paradigms (Horton et al.,

2013). Attempts to adapt multi-photon microscopy to freely behaving animals have

achieved neither the stability nor the ease of implementation desired (Helmchen et al.,

2001; Flusberg et al., 2005).

Alternatively, more superficial brain regions can either be removed (Dombeck

et al., 2010) or circumvented by implanting an optical probe, such as a GRIN lens

(Barretto et al., 2009), a microprism (Andermann et al., 2013) or a communications-

grade optical fiber for fiber photometry (Guo et al., 2015). These techniques can be

e↵ective (Betley et al., 2015), but damage superficial tissue and limit imaging to a
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planar cross-section of the desired brain region.

In this thesis, we propose using bundles of splaying microfibers as a new opti-

cal interface, which has the potential to provide a high channel count, minimally

invasive, stable, bidirectional optical interface for deep brain regions. The thesis is

organized as follows: first, in chapter 1, we briefly review existing optical methods

and associated tradeo↵s, framing the role of the splaying optical microfibers in the

larger methodological landscape. Second, in chapter 2, we describe the implant in

detail and histologically evaluate the implant, assessing both the splaying properties

of the bundles and the presence of neurons in close proximity to the fibers. Next,

we describe optical models of both the individual fibers and the interface properties

of the bundles in chapter 3. In chapter 4, we describe initial in vivo applications

of the interface and show fluorescence data recorded through the fibers. Finally, in

chapter 5, we describe peripheral developments (both hardware and software) that

enable application of the technique in longitudinal experimental work.

1.1 Background

1.1.1 Optical techniques

Due to advantages inherent to optical techniques for recording and manipulating neu-

ral activity, these techniques have become indispensable to advancing systems neu-

roscience. Specifically, optical methods allow sensing and perturbing neural activity

at a cellular spatial resolution and, due to new indicators, at a sub-action potential

temporal resolution. In addition, optical techniques can be deployed in long-term ex-

periments to track cellular dynamics over time in awake behaving animals, allowing

directly probing the circuits relevant to complex behaviors.

Probes and indicators. Crucial to the success of optical techniques are the de-

velopment of genetically encoded probes. These proteins enable optically interfacing
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with existing cells.

One of the earliest and most pervasive probes is GCaMP, a combination of green

fluorescent protein (GFP) isolated in jellyfish, and a calcium binding chain. When

calcium binds to the protein, conformational changes in the chain alter the e�ciency

of the fluorescent protein and, as a result, increase its fluorescence (Nakai et al., 2001;

Barnett et al., 2017). By illuminating cells expressing such a probe with the excitation

wavelength and measuring the fluorescent emissions, it is possible to sense changes in

intracellular calcium and, hence, the calcium-mediated depolarization associated with

action potentials. Subsequent iterations on the protein have increased its e�ciency,

speed and brightness (Chen et al., 2013).

The capacity to measure intracellular calcium enables inquiries into a range of

signaling and encoding questions, but also is inherently limited to suprathreshold cel-

lular dynamics. New probes are being developed to sense other dimensions of cellular

activity, including pH indicators, neurotransmitter indicators and voltage indicators

(Lin and Schnitzer, 2016). Voltage indicators have tremendous potential to allow

visualizing both subthreshold and suprathreshold cellular dynamics at high temporal

resolutions (Han et al., 2013; St-Pierre et al., 2014; Gong et al., 2015). But given

the highly localized voltage di↵erentials (only present at the cell membrane) and the

much shorter time course of voltage fluctuations, these probes must be more precisely

localized and much brighter to enable high frame rate acquisition and detection.

In addition to sensing other cellular dynamics, new fluorophores are being devel-

oped and deployed that leverage the potential to multiplex signals across wavelengths.

For example, calcium and voltage indicators are being developed that use red or

near-infrared fluorophores (Tischbirek et al., 2015; Dana et al., 2016). Such new fluo-

rophores o↵er the potential to multiplex signals across non-overlapping wavelengths:

this can enable sensing two properties simultaneously (e.g., calcium and voltage),
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or can enable sensing from two subpopulations simultaneously, or can enable both

sensing and modulating activity simultaneously. In addition to the ability to multi-

plex signals across wavelengths, new fluorophores can extend optical access to deeper

brain regions by moving to wavelengths with lower absorption (Tischbirek et al., 2015;

Dana et al., 2016).

Beyond sensing, novel genetic probes enable manipulating neural activity. Start-

ing with Channelrhodopsin-1 (Nagel et al., 2002), which encodes a light-gated pho-

ton channel derived from the phototaxis mechanism in green algae, such probes have

enabled modulating the excitability and membrane potential of neurons through con-

trolled exposure to specific excitatory wavelengths (Boyden et al., 2005; Deisseroth

et al., 2006; Yizhar et al., 2011).

Genetic targeting. All of these fluorescent probes and light gated channels are

genetically encoded, which allows for precise targeting and expression of the protein

in specific neural subpopulations of living animals. Transgenic animals are available

with expression in cell types of interest, while new viral vectors enable targeting ex-

pression in neurons based on connectivity (Tervo et al., 2016). New techniques, such

as relying on immediate early genes, allow targeting expression to those neurons in-

volved in specific circuits and memories (Liu et al., 2012). All of these advances in

genetic targeting enable precisely interfacing with a narrowly defined neural popula-

tion, allowing researchers to interrogate the dynamics relevant to a specific behavior

or circuit.

Field of view. Optical interrogation and manipulation of neural circuits o↵ers a

number of additional advantages beyond the probes and targeting flexibility. One of

the big advantages is the ability to interface with neurons over a large field of view,

providing simultaneous access to thousands of neurons (Mohammed et al., 2016).
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New iterations have scaled this up to hemisphere- or skull-sized imaging windows,

exposing millions of neurons (Kim et al., 2016). Through the large field of view,

optical techniques provide the ability to track information encoding or behavioral

modulation throughout a region or across regions, providing a more holistic vantage

of the neural activity. Of course, with this breadth of data, new analysis challenges

emerge, as it becomes more di�cult to identify the salient activity.

Longitudinal access. Optical access not only achieves a large spatial field of view,

it also enables long term tracking of individual neurons. Cells can be tracked across

days to understand how neural encoding and activity changes with time. For exam-

ple, recording calcium activity in the song bird premotor area exposed instability in

neural encoding (Liberti III et al., 2016) that was not visible in previous electrophys-

iology experiments, where single cells can often only be tracked on the scale of hours

(Hahnloser et al., 2002).

Awake behaving experiments. This goes hand-in- hand with the longitudinal

access, but it is worth explicitly emphasizing that optically interfacing with the brain

does not preclude awake behaving experiments. Many interface technologies, dis-

cussed in the next section, allow recording animals in freely behaving paradigms. In

the song bird example just mentioned, this ability to record neural activity in freely

behaving animals is crucial, as the birds will rarely sing if constrained (Liberti III

et al., 2017).

1.1.2 Interface technology

The last section identified a range of genetically encoded probes that enable opti-

cal access to neural activity. A complimentary area of technology development has

focused on the hardware and techniques for recording or stimulating the described



6

probes. There are a number of techniques used to precisely interface with the neurons

in question, each of which achieves di↵erent tradeo↵s in terms of sensitivity, signal lo-

calization and experimental constraints. We highlight three widely used technologies

below.

Multi-photon microscopy. Multi-photon microscopy provides powerful and pre-

cise access to fluorescent indicators, achieving greater precision in the depth axis

through two-photo absorption and improving penetration by exciting with higher

wavelength light (Xu et al., 1996). In addition, the two-photon absorption decreases

the amount of excitation light required, reducing the chance of bleaching (Denk et al.,

1990). Three-photon microscopy further builds on these principles, achieving greater

penetration, allowing imaging indicators at depths exceeding 1 mm (Horton et al.,

2013; Wang et al., 2017).

Despite these strengths, multi-photon microscopy faces key constraints. Given

the expenses associated with constructing and maintaining a two-photon microscope,

there are substantial fixed costs and few labs have the capacity to run simultaneous

experiments. In addition, the types of experiments are constrained, often relying on

recording in animals that are head fixed. Head-mounted two photon microscopes

show potential (Helmchen et al., 2001; Flusberg et al., 2005), but these have not

achieved the reliability or stability necessary for widespread use.

Single photon microscopy and miniature microscopes. Singe photon mi-

croscopy requires more excitation—risking more photobleaching—and does not have

the depth penetration or resolution of multi-photon microscopy, but it carries a num-

ber of important advantages. Most notably, single photon microscopy can readily be

scaled to small applications, allowing recording from freely behaving animals through

miniature head-mounted microscopes (Ghosh et al., 2011; Cai et al., 2016; Liberti III
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et al., 2017). These setups come with a lower price tag and enable recording animals

during less constrained behaviors.

Variations on the standard miniature microscopes are being developed that incor-

porate some of the advantages of multi-photon microscopy, such as new head-mounted

light-field microscopes capable of high speed volumetric imaging (Skocek et al., 2018).

Fiber photometry. Another technology used for optically interfacing with the

brain is fiber photometry. The technique relies on using a large diameter (125 µm

or more), multi-mode fiber to deliver excitation light and collect fluorescence from a

specific region (Adelsberger et al., 2005; Cui et al., 2013; Adelsberger et al., 2014).

Such an approach sacrifices the spatial resolution of microscopy for high sensitivity,

high temporal resolution bulk recording. For example, it enables recording bulk

fluorescence from axonal projections (Gunaydin et al., 2014). Such fiber setups are

also frequently used to deliver excitation light to opsins in a target region, in order

to modulate neural activity (Warden et al., 2014).

Multi-site fiber photometry has scaled these techniques up to 8–12 fibers, each of

which can be implanted in a di↵erent site. Collectively, the fibers enable simultaneous

recording of bulk fluorescence across brain regions (Guo et al., 2015).

Waveguides and new implant. The three methods above have widespread usage,

but there are a number of new approaches being development that combine optical

and electrical components to move both illumination and detection to an implantable

probe. With such devices, it is possible to use less light power, more easily image

large volumes and use waveguides to achieve targeted excitation (Warden et al., 2014;

Wu et al., 2015; Segev et al., 2017).
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1.1.3 Accessing deep brain regions

The range of optical techniques described in the previous section are widely used

to optically record or manipulate neural activity. Yet all of these techniques are

constrained by the light scattering and absorption of the brain, which either limits

the techniques to more superficial regions or requires more invasive implants to access

deep brain regions.

Multi-photon microscopy. Two- and three-photon microscopy achieve greater

penetration through use of wavelengths that have lower scattering coe�cients in tissue

(Wang et al., 2017). This is especially true for three-photon microscopy, that is able

to record fluorescent indicator activity from depths exceeding 1 mm. But as stated

before, these methods are generally limited to head-fixed experimental paradigms.

Implantable optics. To reach further than is accessible with three-photon mi-

croscopy, or to image from a deep brain region in a freely behaving animal, researchers

currently rely on implantable optics. Specifically, GRIN lenses (Barretto et al., 2009)

and prisms (Andermann et al., 2013) are frequently used to access deeper brain struc-

tures.

But as we have learned from an existing body of literature related to electrode

development, implants with a cross section greater than 50 µm can cause neuronal

damage and death over a region up to 100 µm from the implant (Seymour and Kipke,

2007). The insertion trauma and the motion of the brain relative to the implant after

insertion can trigger tissue encapsulation, disruption of oxygenation and excitotoxic

cell death (Szarowski et al., 2003; Polikov et al., 2005; McConnell et al., 2009; Freire

et al., 2011). Implants that have a small cross section (<10 µm) and that are more

flexible can avoid this tissue response (Seymour and Kipke, 2006; Harris et al., 2011;

Kozai et al., 2012; Patel et al., 2015a). Unfortunately, most optical implants have
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diameters exceeding 500 µm (in order to achieve a wide field of view) and are rigid.

As a result, GRIN lenses and other optical implants damage or destroy the tissue

in the immediate path and are often encapsulated in glia due to the induced tissue

response (Lee et al., 2016). The interface will collect fluorescence activity from neu-

rons just beyond this region of encapsulation. Yet the full impact of the implant is

often unknown. Due to dense local connectivity, tissue damaged by the implant and

foreign body response can impact network dynamics in the imaging plane (Hayn and

Koch, 2015; Hayn et al., 2017; Goss-Varley et al., 2017).

Tissue removal. Another approach worth mentioning, but sharing many of the

limitations of optical implants, is removal of superficial tissue (Dombeck et al., 2010).

By removing superficial tissue, it is possible to directly access the region of interest

and apply standard imaging techniques (such as a head-mounted microscope or multi-

photon imaging). But the contribution of superficial regions and local connectivity

are both jeopardized or obliterated in such an approach.

1.2 Proposed Solution

In order to translate the benefits inherent in superficial imaging techniques, such as

long-term stability, high-channel counts and minimal tissue damage, to deep brain

regions, we propose the use of arrays of dissociated optical microfibers that can be

implanted in brain tissue. The principle of these optical fibers is based on self-splaying

carbon fiber microthread arrays developed for electrophysiology (Guitchounts et al.,

2013; Markowitz et al., 2015). The optical fiber bundles contain hundreds or thou-

sands of multimode optical microfibers as small as 6.8 µm in diameter, displacing sig-

nificantly less brain tissue as compared with existing optical fiber implants. As each

fiber travels independently and finds a path of least resistance, the fibers separate and

splay, expanding the potential recording area while minimizing tissue damage. Each
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fiber maintains near total internal reflection, allowing the fiber to optically interface

with genetically encoded indicators and probes in the tissue surrounding the fiber

aperture.

The fibers are constructed by sourcing commercial leeched fiber bundles produced

as flexible endoscopes, which are composed of thousands of small diameter glass mi-

crofibers, where each fiber has a low index of refraction cladding for light confinement.

By cutting the fiber bundle in half, we gain access to the individual fibers, which can

be directly implanted into the tissue. Outside of the brain, the fibers converge to a

polished imaging surface where the fibers are arranged in a tight lattice that can be

mounted under a traditional fluorescence microscope objective.

This approach achieves a number of the usual advantages of optically interfacing

with tissue, while foregoing the substantial tissue impact associated with large, mono-

lithic implants such as GRIN lenses. By implanting hundreds or thousands of optical

microfibers, it is possible to record or stimulate neurons over a large region of tissue.

Given that the fibers splay during insertion, a bundle can spread out over 1 mm at a

depth of 3 mm, sampling fluorescent activity over a large 3D volume. Because each

fiber is flexible and has a small cross section, the individual fibers will not have the

same impact as a larger, more rigid implant, preserving more of the local connectivity

and network dynamics. Finally, because each fiber has near total internal reflection,

it will deliver excitation light to and collect fluorescence from a small amount of tissue

near the fiber aperture.

Bundles of optical microfibers have the potential to extend multichannel, bidi-

rectional optical techniques to deeper brain regions without having to remove or

obliterate the adjacent brain regions. In the next chapter, we present a more detailed

description of the fibers and review histological evidence showing the distribution of

fibers in tissue and the presence of neurons in close proximity to the fiber tips.



11

Chapter 2

Histology of implanted optical microfibers

shows consistent splaying throughout the

target region, with minimal tissue

response

2.1 Introduction

Optical techniques for recording and manipulating neural activity play a crucial role

in advancing systems neuroscience, due to the broad field of view, the flexibility and

specificity of viral and genetic targeting, and the development of novel probes o↵er-

ing non-overlapping spectral bandwidth and increasing temporal resolution (Emiliani

et al., 2015; Gong et al., 2015).

Yet these techniques are inherently limited in all but the most superficial regions

of the brain, given the light scattering and absorption of tissue. New developments

are helping to extend such optical techniques to deeper brain regions, but necessitate

tradeo↵s in terms of either more constrained experimental paradigms or increased

tissue damage. Three-photon microscopy at 1300 nm has enabled recording from

intact brain tissue at depths exceeding 1 mm (Horton et al., 2013; Wang et al., 2017).

And while three-photon microscopy is not yet amenable to recording in freely behaving

animals, head-mounted two-photon microscopes show promise, but are limited to

depths on the order of the mean free path of near infrared photons in the brain,

just a few hundred microns (Zong et al., 2017). Greater penetration depths are now
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being achieved with red-shifted fluorophores (Dana et al., 2016). At depths beyond

the reach of three photon imaging, optically interfacing with deeper layers and non-

cortical structures has relied on implanting miniature gradient index (GRIN) lenses

or prisms (Jung et al., 2004; Barretto et al., 2009; Andermann et al., 2013; Cui et al.,

2013), or removing overlying tissue (Dombeck et al., 2010). Such techniques provide

optical access, but compromise or obliterate structures adjacent to the area being

imaged.

Implants with a cross section greater than 50 µm cause neuronal damage or death

over a zone up to 100 µm from the implant (Seymour and Kipke, 2007); the trauma

of insertion and motion of the implant after insertion trigger a range of reactions in-

cluding the immune foreign-body response to non-organic material, the disruption of

oxygenation due to vessel damage, the breakdown in the blood-brain barrier, and exci-

totoxic cell death associated with accumulation of extracellular glutamate (Szarowski

et al., 2003; Polikov et al., 2005; McConnell et al., 2009; Freire et al., 2011). Due to

dense local connectivity, tissue damaged by the implant and foreign body response

could impact network dynamics in the imaging plane (Hayn and Koch, 2015; Hayn

et al., 2017; Goss-Varley et al., 2017). Yet implants with a cross section less than

10 µm have a substantially diminished tissue response (Seymour and Kipke, 2007;

Seymour and Kipke, 2006; Kozai et al., 2012; Patel et al., 2015a).

We propose a new technique to optically address deep brain regions through sub-

10 µm implants. The basic idea is to cut commercially available leached fiber bundles

(Gerstner et al., 2004), revealing the dissociated fibers, which can then be implanted.

In this process, hundreds or thousands of multimode optical microfibers each with a

diameter as small as 6.8 µm are implanted into the brain while the back end of the

device provides optical access to the fibers. During the implant process, each fiber

travels independently and finds a path of least resistance causing the implanted bundle
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to spread gradually. The small diameter of the fibers minimizes tissue displacement

and decreases the likelihood both of evoking a tissue response and, as a result, of

disrupting local network dynamics in the imaging plane.

In the approach described here, each fiber has a core and a cladding. The refractive

index mismatch achieves near total internal reflection of light, enabling each fiber to

interface with tissue near its aperture. Because of the splaying during insertion, the

fibers will not maintain a strictly organized spatial mapping. Yet each fiber may

provide a bidirectional interface with a small volume of tissue near the tip of the

fiber, and potential correlations across fibers can enable reconstructing a relative

spatial topography. Outside of the brain, the fibers converge to a polished imaging

surface, where each fiber is arrayed in a tightly packed lattice that can interface with

a traditional fluorescence microscope.

Based on histology and immunohistochemistry, we demonstrate that the bundles

of optical microfibers splay during insertion into the brain, achieving a spatially dis-

tributed set of fibers throughout the target brain region. The small cross section of

the individual fibers displaces less tissue than GRIN lenses (for example, a bundle

of 2,000 fibers displaces half the volume of a 500 µm diameter lens), and hence may

preserve more neurons and promote more natural network dynamics in the target

region. Based on simulations of the optical profile of individual fibers, we assess the

sensitivity of the fibers as a multi-channel, bidirectional optical interface. Finally,

we show that fluorescence signals can be recorded from di↵using fluorescent beads

through these small-diameter optical microfibers.
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2.2 Methods

2.2.1 Fibers

The fibers we use are leached fiber bundles produced as flexible medical endoscopes.

This work primarily relied on bundles of 4,500 fibers where each individual fiber has a

diameter of 8 µm (Schott 1534180), although variations exist in the number of fibers

(3,500–18,000) and the diameter (6.4–11.9 µm). The bundles are built for coherent

imaging and constructed from three types of glass, a core (diameter: 5.1 µm, refractive

index: 1.605), a cladding (thickness: 1 µm, refractive index: 1.56) and an acid soluble

glass (thickness: 0.4 µm). The bundles are manufactured as traditional coherent

fibers, and then the acid soluble glass is dissolved for bundle flexibility (Gerstner

et al., 2004). The ends of the fibers come together in polished imaging surfaces held

in ferrules. The dissociated fibers are covered in a flexible silicone sheathing.

We cut the bundles in half, using a scalpel or razor, sacrificing the spatial cohesion,

but providing access to the individual, dissociated fibers. The silicone sheathing was

cut back to expose the fibers, and we then cut a fraction of the exposed fibers to reduce

the implant size to a target number of fibers (varied over implants to assess tissue

impact). The remaining fibers were secured together by forming a bead of light-cured

acrylic (Flow-It ALC, Pentron Clinical) around the fibers, leaving 4–5 mm of fibers

exposed (Figure 2·1b). The exposed fibers could be further shaped using fine scissors,

creating a bevel. Such pre-implant shaping increases the distribution of depths of the

fiber tips. At this point, the dissociated fibers can be directly implanted into brain

tissue; the other end of the fiber, containing the ferrule and polished surface with

fibers aligned and arranged in a lattice, can be readily interfaced with a fluorescence

microscope or other optical configuration (Figure 2·1).

Optical attenuation of the fibers was measured to be 3.38 ± 0.03 dB (std. dev.)

for a 840 mm long bundle (4 dB/m). Attenuation was measured using collimated
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Figure 2·1: Bundles of microfibers as a potential deep brain
optical interface. (a) The polished imaging surface is mounted in
a traditional fluorescence microscope, while individual fibers with a
diameter as small as 6.8 µm are implanted into the brain. (b) The
polished imaging surface that connects with the microscope. (c) A
bundle of 18,000 fibers. (d) Light propagates with near total internal
reflection, allowing it to deliver and collect light at the tips of the fibers.
Six fibers are shown in a fluorescein solution, with pink lines added to
emphasize fiber path.
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light in the 446–486 nm range (relevant for exciting GFP-based indicators, such as

GCaMP, or stimulating channelrhodopsin) focused on the polished imaging surface

using a lens with numerical aperture matched to the fibers. In this measurement,

we assumed that 19.4% of the incident light enters the cores based on the surface

area of the fiber bundle, the fiber count, and the core diameter. After cutting the

bundle, attenuation for the 420 mm bundle measured from the splaying fibers is

3.78 ± 0.02 dB (std. dev.), indicating that most of the light carried by the bundle is

transmitted from the cut ends.

2.2.2 Histology

Animals. Animal care and experimental procedures were approved by the Insti-

tutional Animal Care and Use Committee (IACUC) of Boston University (protocols

14-028 and 14-029). Fibers were implanted in 27 adult zebra finches (> 120 days

post hatch). Of the animals, eight were implanted with alternative fibers (di↵erent

materials and di↵erent fiber diameters; results not shown). Of the remaining nine-

teen, fifteen were used for histology described in this chapter with four animals being

excluded due to poor slicing (tearing of the tissue when slicing through the fibers) or

poor staining (during immunohistochemistry).

Fiber implant. Anesthesia was induced with 4% isoflurane and maintained at 1–

2% for the duration of the surgery. An analgesic (0.5 mg/kg meloxicam, Eloxiject) was

injected intramuscularly into the breast at the start of the procedure. The animal

was placed in a stereotaxic instrument and feathers were removed from the scalp.

The scalp was cleaned with Betadine and ethanol. A local anesthetic (4 mg/kg

bupivacaine) was injected subcutaneously into the scalp, and an incision was made

along the anterior-posterior axis.

The skull over the implant point (area X) was localized based on head angle
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(20�) and stereotactic coordinates (5.8 mm anterior, 1.5 mm lateral). In order to

accommodate the bundle of fibers, a 0.5–1 mm diameter craniotomy was created,

with the size matched to the bundle. The craniotomy was created by first using a

dental drill to remove the outer layer of bone, then by using an ophthalmic scalpel to

remove the inner layer of bone (Long et al., 2010). The dura within the craniotomy

was removed using either a dura pick constructed from sharpened tungsten or an

ophthalmic scalpel.

The fiber bundle was prepared by securing the fibers together in a bead of light-

cured dental acrylic (Flow-It ALC, Pentron Clinical) and cut to 3–5 mm. Using a

digital manipulator attached to the stereotaxic rig, the fiber bundle was positioned

over the durotomy and slowly lowered into the tissue at a rate of approximately

500 µm per minute. The insertion rate varied based on the number of fibers and

visual inspection of the tissue surrounding the implant. Larger implants (more than

250 fibers) could result in a noticeable depression or “dimpling” in the tissue before

the bundle passed through the surface of the brain. Such dimpling was generally

observed during the first 250–350 µm of insertion; beyond that depth, the size of

the depression remained consistent as we continued to lower the implant. We found

that the visible dimpling could be alleviated by lowering the implant an additional

50 µm past the desired depth, waiting for five minutes, then returning the implant to

the desired depth. We did not observe bleeding associated with the implant or the

dimpling. After the fibers were lowered to a depth of 2.7–2.9 mm (measured from the

point when the fibers enter the tissue), additional light-cured dental acrylic was used

to secure the fiber bundle to the skull surrounding the craniotomy.

Animals received nonsteroidal anti-inflammatories (0.5 mg/kg meloxicam) both

before the surgery via injection (Eloxiject) and after the surgery in their food (Meta-

cam), as well as topical antibiotics (Pfizer Terramycin) after the surgery.
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Three days post implant, animals were returned to the aviary and housed socially.

Animals used to image the distribution of fibers were perfused after 21 to 331 days

(mean 88 days). Animals used for immunohistochemistry staining were perfused after

77 to 395 days (mean 176 days).

Animal perfusion and fixation. Animals were injected with 0.1 mL 10% sodium

pentobarbital intramuscularly. Once anesthetized, the animals were perfused intrac-

ardially with phosphate-bu↵ered saline (PBS) followed by 4% paraformaldehyde in

0.1 M PBS. The skull and brain were separated from the body. Leaving the skull

in place (as the fibers are anchored to the skull), small cracks were made in the

bone to ensure penetration of the fixative. The skull and brain was immersed in 4%

paraformaldehyde in 0.1 M PBS overnight. Next, as cryoprotection, it was immersed

in 15% sucrose in 0.1 M PBS overnight, followed by 30% sucrose in 0.1 M PBS for

a second night. Placing the skull upside down such that the implant trajectory was

roughly perpendicular to the mounting slide, the skull was frozen (-20�C) in embed-

ding medium (Optimal Cutting Temperature Compound, Tissue-Tek) for 30 minutes

and sectioned in a cryostat (Leica CM3050S, with Thermo Scientific MB22 microtome

blades) in either 70 or 100 µm thick slices, cutting through the skull and perpendicu-

lar to the fiber bundle implant. Due to the thin, pneumatized bone of the songbird,

cryosectioning through the skull was possible without any decalcifying process. For

optimal cutting, blades were regularly shifted and replaced to ensure a fresh cutting

surface was always in use; without such precautions, the worn blades were more likely

to catch on fibers and tear surrounding tissue. Some sections were discarded because

of tearing. Slices were either mounted on slides or were transferred to wells containing

PBS and processed for immunohistochemical staining as described below.
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Histology. To quantify the splay of fibers, brightfield microscopy images were col-

lected of slices mounted on slides and secured with coverslips. Images were collected

from slices at various depths.

Immunohistochemistry. In order to assess tissue health and imaging viability, a

selection of slices taken at various depths were processed to label neurons via NeuN

antibodies. Slices were washed in PBS, then in 0.3% Triton X-100 in PBS for 30

minutes and finally in a solution of 0.3% Triton X-100 and 5% normal donkey serum

(NDS) for 45 minutes. The slices were then placed in a solution of the primary an-

tibody (MAB377 Anti-NeuN, 1:500, EMD Millipore) made with 3% bovine serum

albumin (BSA) and 0.3% Triton X-100 in PBS. The wells were placed on a rota-

tor and allowed to incubate at 4�C overnight. Slices were washed in PBS (⇥3, 10

minutes each). Next, the slices were placed in a solution of the secondary antibody

(715-025-150 Rhodamine [TRITC] A�niPure Donkey Anti-Mouse IgG, 1:500, Jack-

son ImmunoResearch). The wells were again placed on a rotator and allowed to

incubate at 4�C for one hour. Slices were washed in PBS (⇥3, 10 minutes each).

Next, 1 mL of DAPI stain (4’,6-Diamidino-2-Phenylindole, Dihydrochloride, 300 µM

solution, 1:1000, D1306, Thermo Fisher Scientific) was added to each well. After three

minutes, the slices underwent a final wash (⇥2, 5 minutes), before being mounted on

glass slides with an anti-fading mounting medium (Fluoro-Gel, EMS) and secured

with a coverslip. Some immunohistochemistry samples were not usable, due to inef-

fective staining or fibers becoming dislodged during the washing process.

Microscopy. Slices were imaged using an upright fluorescence microscope (Nikon

Eclipse NiE, with a DS-Qi1 Monochrome camera and controlled by NIS-Elements:

Advanced Research), illuminated by an LED light source (SOLA Light Engine). To

assess splay, we used either a 4⇥ (Plan Fluor, NA 0.13) or a 10⇥ (Plan Fluor, NA
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0.3) objective. To image immunohistochemistry, we used a 20⇥ objective (Plan Apo

Lambda, NA 0.75).

Qualitative and quantitative analysis. To quantify fiber splay, brightfield im-

ages were collected from slices near the tip of the fiber. Fibers were manually an-

notated using a custom MATLAB program for organizing and analyzing histology.

To calculate a measure indicative of the splay of the fibers, a bivariate normal dis-

tribution was fit to the position of the fibers in the slice and the area of the ellipse

representing two standard deviations of the distribution (the 95% confidence interval)

was calculated. The data presented are from 11 animals, reflecting the animals im-

planted with bundles consisting of 7–8 µm diameter fibers with at least a three week

recovery period and where the tissue at the tip of the implant was cleanly sliced (see

note above about sectioning).

To quantify the presence of neurons in proximity to fibers, two-channel fluores-

cence (with NeuN in red and DAPI in blue) and brightfield images were collected

from the target implant region (area X). Control images were collected from the con-

tralateral region (without an implant) to measure baseline neural distributions and

densities. Neurons were manually annotated based on a consensus of the NeuN and

DAPI signal, and fibers were manually annotated based on both the histology and

brightfield images. For slices with fibers, the distance from each fiber to the nearest

neuron was calculated (fibers where the edge of the image was closer than the nearest

neuron were ignored), subtracting the radius of the fiber. As a control, random points

were selected on the control slices without fibers, and the distance to the nearest neu-

ron was calculated (points could be selected at or on neurons, resulting in a distance

of zero).

In addition, NeuN-stained cell density was calculated for the 50 µm region sur-

rounding each implant, normalized by densities calculated on the control slices. To
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account for the close proximity of neighboring fibers, the cross sectional area of neigh-

boring fibers was subtracted from the area of the 50 µm region when calculating den-

sity surrounding implants. The data presented are based on twelve annotated slices

from five animals, reflecting all animals implanted with bundles of 7–8 µm diameter

fibers with at least a ten week recovery period and successful immunohistochemical

staining.

2.2.3 Modeling

Fiber profile. The optical profile for a single fiber was generated via a Monte Carlo

simulation of 10,000,000 photon packets traveling through a 1 mm3 volume (modeled

as isotropic 5 µm voxels) (Boas et al., 2002). Photon packets enter the tissue at

[500 µm, 500 µm, 200 µm] with a Gaussian distribution reflecting the NA of the

fiber (0.377). Within each voxel, the photon packet can be scattered (µs = 10 mm�1

with anisotropy g = 0.9 (Yi and Backman, 2012)) or fractionally absorbed (µa =

0.337 mm�1 for 490 nm light, µa = 0.343 mm�1 for 512 nm light based on 3% blood

volume fraction [BVf] (Bouchet et al., 2010), 15 g/DL hemoglobin concentration

(Raabe et al., 2011), an oxygenation fraction of 70% and extinction coe�cients for

hemoglobin (Kollias and Gratzer, 1999)). The 3D path of each photon packet is

averaged together, normalized and visualized as a 2D slice through the volume. The

fluorescence signals received by individual fibers, given the illumination profile from

the superposition of the optical profiles emitted from all of the fibers, is calculated

following the procedure described in (Hillman et al., 2004; Burgess et al., 2008).

Neural interface simulation. To simulate interfacing with a neural population,

a 1.2 mm3 volume of tissue was modeled. This volume is consistent with area X in

the adult zebra finch (Bottjer et al., 1985) and is illustrative of a deep brain region.

A target subpopulation of neurons of interest is modeled as uniformly distributed



22

through the volume with a density of 780,000 neurons per mm3, based on the density

of medium spiny neurons in area X in male zebra finch that are one year old (Kosubek-

Langer et al., 2017). All cells in the target subpopulation are assumed to express the

relevant genetic probe.

Based on the histological data on splaying, the fiber bundle is assumed to have a

bivariate normal distribution in xy space with standard deviation (�) based on the

number of fibers in the bundle. The fiber depth will vary based on preparation of the

bundle (how the fibers are cut prior to implant) and the path of splay; this variability

is modeled as a normal distribution of depths with standard deviation � = 30 µm.

The strength of stimulation or excitation for individual neurons is calculated for

each fiber by identifying the sensitivity of the voxel that corresponds with the posi-

tion of the neuron relative to the tip of the fiber. The per fiber optical intensities

are summed across all fibers in the bundle to calculate the total potential stimula-

tion/excitation strength. These values are normalized as a percentage of maximum

fluence in the tissue.

To evaluate the ability to uniquely address neurons through illuminating a sub-

set of n fibers, a 20,000 iteration Monte Carlo simulation is used to select random

permutations of n fibers. For each iteration, the number of neurons activated by

the cumulative optical power of the selected fibers is compared with the number of

neurons activated if each fiber was illuminated independently.

The round-trip fluorescence yield for pairs of fibers and neurons, a measure of

expected fluorescent emission collected by the fiber from the neuron, is calculated

by multiplying the total excitation strength for the neuron (as described above) by

the sensitivity of the voxel that corresponds with the position of the neuron relative

to the tip of the fiber (representing the time reversal of emission from the neuron

reaching the fiber tip) (Hillman et al., 2004; Burgess et al., 2008). This round trip
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fluorescent yield is normalized based on the maximum possible yield.

2.2.4 Fluorescent beads

To validate the recording capability of the fiber bundles, the tips of loose fibers were

immersed in a solution of water and fluorescent beads (Bangs Laboratories FSDG007,

7.32 µm diameter, 480 nm excitation, 520 nm emission). The ferrule and polished

imaging surface were held below a traditional fluorescent microscope (Olympus, 20⇥

objective) with a broadband white LED (Thorlabs SOLIS-3C) set at 60% bright-

ness and a GFP filter cube (Semrock BrightLine GFP-4050B, 466/40 excitation,

525/50 emission, 495 dichroic). Excitation power from the objective was measured at

6.27 mW. As beads di↵used in the water, changes in fluorescence were recorded by

a sCMOS camera (Hamamatsu ORCA-Flash4.0 v2) with a resolution of 2048⇥2048

16 bit pixels and an exposure of 50 ms per frame. Saved CXD files were processed

in MATLAB using a custom pipeline. Frames were motion corrected using the Scale-

Invariant Feature Transform (SIFT) algorithm (Vedaldi and Fulkerson, 2008; Lowe,

1999; Lowe, 2004). A standard deviation image created by calculating the standard

deviation of pixels across frames was used to identify those fibers that were in the

solution and where bead di↵usion resulted in variability in the fluorescence. For the

identified fibers, traces were generated by extracting and averaging all pixels that

corresponded with the fiber. Traces were converted to �F/F0, where F0 corresponds

with the 5th percentile intensity (i.e., background intensity when there is minimal

fluorescence from nearby beads).

To calculate the contrast-to-noise ratio (CNR) for the bead recording, we per-

formed a second recording to measure noise. The fibers were placed in a solution

of fluorescein and water, such that the fiber brightness matched the peak brightness

observed during the fluorescent bead recording. The signal was recorded, and again,

traces were generated by extracting and averaging all pixels that correspond with each
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fiber. For the CNR, we calculate the contrast from the fluorescent bead recording by

subtracting the 5th percentile from the 95th percentile intensity and averaging across

fibers; we calculate the noise as the standard deviation for traces from the fluorescein

recording.

2.3 Results

2.3.1 Histology

Bundles of between 50 and 5,000 microfibers were implanted into zebra finch basal

ganglia (area X) at a depth of 2.9 mm. To understand the impact of the bundles,

histologic samples were collected to measure the distribution of fibers in tissue and

to evaluate the distance been fiber tips and the nearest NeuN-stained neurons.

With the fibers anchored to the intact skull, the tissue was fixed and cryosec-

tioned perpendicularly to the implant penetration angle. Sections were imaged and

annotated to record the spatial distribution of microfibers at di↵erent depths. Dur-

ing insertion, each fiber follows a path of least resistance, splaying through the brain

tissue. In these perpendicular sliced sections, the distribution of fibers resembles a

bivariate normal distribution throughout the target region. In Figure 2·2, 530 fibers

can be seen distributed spanning over 1 mm of tissue, while only displacing a cross

sectional area of 26,640 µm2; a 1 mm diameter GRIN lens to access the same region

would have a cross sectional area of 785,398 µm2.

Implant conditions account for much of the variability in the spread of the fibers.

Based on anecdotal observations, the configuration of the fibers prior to implant—

specifically, the spatial arrangement of fibers in the acrylic anchor point (used both

to hold the fibers during the implant and the to anchor the fibers to the skull), and

the spread of the fibers below this acrylic anchor point—appears to a↵ect the final

distribution of the fibers. For example, if the fibers spread in the air before coming
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Figure 2·2: Histology at tip of implant shows microfibers
splayed throughout the target region. A 100 µm thick brain sec-
tion showing the tips of a bundle of 530 optical microfibers implanted
at a depth of 2.95 mm. Before insertion, the bundle had a diameter of
570 µm. This section was collected four months after implant, and the
brain sectioned perpendicularly to the insertion angle. The cross sec-
tional area of tissue displaced by the microfibers (annotated in green)
is 26,640 µm2 (pink circle).
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into contact with the tissue, we tended to observe greater spread after insertion into

the tissue. The configuration of the fibers in the acrylic anchor point is di�cult to

control, as we sought to avoid directly squeezing or stressing the fibers. But we found

that we could influence the amount of spread below the anchor point by keeping the

fibers dry; if the fibers get wet, there is greater adhesion during insertion and, as a

result, a more narrow distribution in the tissue. As a result, we avoided wetting the

fibers and minimized moisture on the surface of the tissue prior to implant (as that

would get wicked into the fiber bundle and increase adhesion).

In Figure 2·4, the distribution of the microfibers in the tissue can be seen to

increase over the four slices from di↵erent depths in the same animal; the splay area

is calculated by drawing a bounding ellipse containing 95% of the fibers. For each

1 mm of implant depth, the diameter of the splay area increases by 229.1 ± 51.1 µm

(std. dev., based on 9 pairs of slices from 5 animals); see Figure 2·3.

Tissue sections from animals with chronic implants (10+ weeks post implant)

underwent NeuN staining to label neurons and DAPI staining to label nuclei. Since

the red blood cells of birds contain DNA, DAPI labelled cells that are not NeuN

stained include populations of glia, astrocytes, red blood cells, and any other non-

NeuN stained cell nuclei. The slices show NeuN-stained neurons in close proximity to

the fibers (see Figure 2·5). In instances where two or more fibers remain close during

insertion, the proximity of the fibers may adversely a↵ect the immediate tissue, as

suggested by an increased presence of non-neural cells (DAPI stained but not NeuN

stained) around such “clumps” of fibers.

By annotating both the fibers and the neurons, the presence of NeuN-stained neu-

rons near the fibers can be compared to control slices (same region, no implant) to

evaluate tissue impact. Figure 2·6 compares the distance from fibers to neurons in im-

plant slices to the distance between randomly selected points and neurons in control
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Figure 2·3: Diameter of splaying increases linearly with depth.
Left: Splay of fibers at a depth of 2.9 mm, in the target region of
songbird basal ganglia from 11 animals. The plot shows the diameter of
the ellipse describing the splay of the fibers for various implant sizes. As
the number of fibers increases, the area accessed by the fibers increases.
Right: For five animals, slices were collected at multiple depths to
estimate splay diameter as a function of depth. For each 1 mm of
implant depth, the diameter of the splay increases by 229.1 ± 51.1 µm
(std. dev.).
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Figure 2·4: Histology at di↵erent depths as the fibers splay
during insertion. A bundle of approximately 1,125 optical mi-
crofibers implanted at a depth of 2.95 mm. Eight weeks after the
implant, the animal was perfused and the brain sectioned perpendicu-
larly to the insertion angle. At the surface, the bundle diameter was
1.03 mm. These 70 µm thick slices from depths (a) 2.76 mm, (b)
2.34 mm, (c) 1.57 mm and (d) 0.59 mm reveal a gradual spreading of
the optical fibers during insertion as each fiber follows a path of least
resistance.
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Figure 2·5: At chronic time points neurons are found in close
proximity to fibers. Three sections from zebra finches implanted
with optical microfibers, collected at least ten weeks post-implant. Sec-
tions are near the tip of the implant, within the basal ganglia (area X,
depth 2.9 mm). (a) and (b) show implants in the basal ganglia (bun-
dle sizes of 4,500 and 1,125 fibers respectively), (c) shows unimplanted
basal ganglia, and (d) shows a corresponding brightfield image used to
confirm fiber locations. Red is NeuN (neurons), blue is DAPI (nuclei)
and green dots are manual annotations that reveal fiber locations. The
immunohistochemistry shows NeuN-stained cells in close proximity to
fibers. In some cases, we observe a dense circle of DAPI stained cells
in close proximity to the fibers (arrow), suggesting either bleeding (in
birds, red blood cells have DNA) or a reactive tissue response (such
as glia or astrocytes). This most frequently occurs at locations where
multiple fibers are in close proximity (this can occur with bundles of
over 4,000 fibers or when fibers are wet prior to insertion). The length
scale of reactive tissue response is approximately an order of magnitude
smaller than for silicon electrode shanks with a 50 µm profile (Szarowski
et al., 2003).
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slices. The control measurement provides a lower bound for distance to the nearest

neuron, if the implant had no impact on the tissue. For the implanted slices, the dis-

tance from a fiber to the nearest NeuN-stained neuron is on average 12.81 ± 9.22 µm

(std. dev.), while on the control slice, the distance from a randomly selected point to

the nearest neuron is on average 8.32 ± 4.72 µm (std. dev.).

We also can compare the NeuN-stained cell density surrounding each fiber relative

to the cell density seen in the control slices. In the 50 µm region surrounding each

fiber, we observe a NeuN density of 69.8% ± 17.9 (std. dev.) the density seen

in control slices (same region, no implant). Because the 50 µm surround typically

includes other fibers, we subtract the cross sectional area of such neighboring fibers

from the 50 µm area when calculating the density.

NeuN staining alone does not provide a comprehensive evaluation of tissue or neu-

ral health; variability in staining does not consistently indicate di↵erences in neural

populations and does not capture non-neuronal changes in tissue health (Ünal-Çevik

et al., 2004; Collombet et al., 2006; Duan et al., 2015). Despite having a narrow

immunohistochemical tool to evaluate tissue health, our histology data are consistent

with the possibility that circuits remain healthy in the vicinity of the fiber tips.

2.3.2 Modeling

To quantify the potential neural population accessible via the optical microfibers,

we modeled the optical profile of a single fiber and a bundle of fibers throughout a

volume of tissue (see section 3.2) (Boas et al., 2002).

Figure 3·2 shows the normalized optical profile for a single fiber in tissue with

spatially uniform anisotropy, scattering and absorption coe�cients based on brain

tissue measurements. At a distance of 40 µm from the tip of the fiber, the number

of photon packets passing through an arbitrary point in the tissue drops below 10%.

Although the fiber can weakly interface with a larger volume of tissue due to the
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Figure 2·6: Histology reveals minimal tissue damage. The dis-
tribution of distances to the nearest NeuN-stained cell for implants
(measuring from the edge of each fiber) and unimplanted controls (mea-
suring from randomly selected points). The NeuN and DAPI staining
shows that there are intact neurons in close proximity to the fibers;
85% of the fibers have a neuron within 20 µm.
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scattering of light in the brain, individual fiber fluorescence will be dominated by

neurons within 40 µm of the tip of the fiber. The viability of recording fluorescent

signals depends on a number of additional properties that will vary based on the

animal model and target region, including the indicator brightness, specificity of

expression, density of the neural signal, and tissue autofluorescence.

Similarly, stimulation through the fiber will most strongly modulate neural ac-

tivity within the region immediately surrounding the tip of the fibers. Based on the

coupling 2.5 µW of 470 nm light into each fiber, and accounting for attenuation mea-

surements of the optical path and fibers, and the simulated optical profile, one fiber

will provide su�cient optical power to activate channelrhodopsins in a 18,000 µm3 re-

gion surrounding the tip of the fiber given a 5 mW/mm2 activation threshold (Yizhar

et al., 2011). For the modeled neural subpopulation (medium spiny neurons in the ze-

bra finch basal ganglia, with a density of 780,000 neurons per mm3 (Kosubek-Langer

et al., 2017)), this stimulation region equates to activating approximately 14 neurons.

For comparison, this stimulation region equates to activating approximately 5 neu-

rons in mouse hippocampus CA1, based on a density of 275,000 neurons per mm3

(Ayberk Kurt et al., 2004; Richards et al., 2013).

Based on the histology of splaying fibers described above, it is possible to overlay

profiles for hundreds or thousands of fibers throughout a brain region to quantify the

properties of the bundle as an interface.

Figure 2·8 shows a distribution of normalized excitation/stimulation power reach-

ing neurons for a simulated bundle of 500 fibers. Although the neurons receiving the

most optical power are within the first 100 µm below the mean implant depth, the

scattering properties of the tissue and the overlap in the excitation profile of fibers

means that the excitation light will a↵ect many more cells 400–600 µm below the

implant depth.
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Figure 2·7: A single fiber would primarily interface with neu-
rons in close proximity to the tip, based on the tissue scatter-
ing and absorption. The normalized log intensity emission profile
of an optical microfiber with tip positioned at [0, 0]. The profile is a
Monte Carlo simulation of photon packets propagating through brain
tissue, with scattering and absorption properties estimated for 490 nm
light. The simulated profile shows a strong interaction with tissue im-
mediately below the tip of the fiber, enabling localized photometry or
stimulation; the weak interactions with a larger volume of tissue will
contribute background in recordings, or delocalized optogenetic excita-
tion.
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Figure 2·8: A computational model indicates that optical mi-
crofibers would record or stimulate neurons immediately be-
low the fiber tips. Left: Distribution of light intensities reaching
all modeled neurons, for uniform illumination of all fibers in the fiber
bundle. These values are normalized by the maximum possible optical
power (i.e., the power at the point in the tissue with the highest in-
tensity). Blue dots are individual neurons, and the red line is a depth
distribution of neurons that receive >1% of max excitation, indicat-
ing that for full bundle illumination, optical stimulation would activate
cells far away from the fiber tips. Right: The round-trip fluorescence
yield is calculated by first taking the total excitation power reaching
the neuron (left) and scaling that by the strongest overlapping fiber
profile (representing the collected fluorescence emission). These values
are normalized by the maximum possible round-trip fluorescence yield
(the maximum achievable given the excitation profile). Blue dots are
individual neurons, and the red line is a depth distribution of neurons
with >1% of max excitation.
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In stimulation experiments, rather than illuminating all fibers, a subset of the

fibers can be illuminated to produce more precisely targeted cellular modulation.

Given the splay of the fibers, the vast majority of fibers can address a unique set of

cells closest to the tip; yet the scattering properties of the tissue and the overlaps

in the profiles mean that delivering stimulation through multiple fibers will increase

activation in deeper regions and at the overlap between fiber profiles. For example,

our model suggests that activating each fiber independently at non-overlapping times

in a bundle of 500 fibers would serially stimulate approximately 4,600 cells; if all

fibers were active simultaneously, there would be su�cient optical power to stimulate

approximately 93,000 cells in the modeled neural population.

By activating small subsets of fibers, it is possible to avoid broad activation, while

still exploring stimulation patterns with many degrees of freedom. By simulating

overlaps in the optical profile for random sets of 10 fibers in a bundle, light delivered

through the ten fibers will only activate an average of 11 more neurons (9.3%) than if

the fibers were activated individually. Increasing the number of simultaneously active

fibers will increase the crosstalk between the stimulation profiles. For example, sets

of 50 fibers will activate an average of 506.4 more neurons (87.3%) than if the fibers

were activated individually.

To evaluate the bundle as a potential recording interface, we calculate the round-

trip fluorescence yield, indicative of how much fluorescent activity is collected by each

fiber. Consistent with the profile for a single fiber, neurons within 40 µm of the mean

implant depth have the highest fluorescence yield for recording purposes; cells up

to 120 µm away will contribute to the signal, yet low fluorescence yield will likely

relegate this contribution to indistinguishable background.



36

2.3.3 Fluorescent beads

As a preliminary test of the fluorescence recording capability, we immersed dissociated

fibers in a suspension of fluorescent beads in water and recorded fluorescence traces

as the beads di↵used through the sensitivity profile of the individual fibers. Taking

a standard deviation of pixel intensities over the recording, we generated a standard

deviation image of the polished imaging surface, which revealed those fibers with large

fluctuations in measured fluorescence resulting from the di↵using beads (Figure 2·9).

Extracted traces (average intensity for pixels corresponding with the fiber), shown in

Figure 2·9, reveal minimal crosstalk between neighboring fibers and a high signal-to-

noise ratio. With excitation power of 6.27 mW measured at the imaging surface of

the fiber bundle, we observed fluctuations in fluorescence intensity up to 23.7⇥ the

F0 intensity.

We calculate a CNR (contrast-to-noise ratio) with contrast 25.88⇥ the standard

deviation of the noise observed during a similar recording with the fibers immersed in

a uniform fluorescein solution (with fluorescent brightness matched to the peak signal

in the bead recordings).

2.4 Discussion

Our histological results demonstrate that bundles of optical microfibers may provide

an alternative to GRIN lenses to optically address 3D volumes in deep brain areas.

The fibers self-splay during the implant process, achieving a distribution that resem-

bles a bivariate normal distribution, with the diameter frequently exceeding 1 mm at

an implant depth of 2.9 mm. There appears to be a relationship between the number

of fibers and the diameter of the splay, but the trend does not achieve significance

in the data set (r2 = 0.5, p = 0.11). Small bundles show increased variability in

splay that requires further exploration. We believe that implant conditions, such as
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Figure 2·9: Recording of di↵using fluorescent beads reveals
minimal cross-talk between neighboring fibers. The dissociated
end of a bundle of fibers was immersed in a suspension of fluorescent
beads in water, while the imaging surface was recorded via a traditional
fluorescence microscope. The image on the left is a standard devia-
tion image corresponding with a 1024⇥1024 portion of the full sCMOS
sensor, where pixel brightness corresponds with variability over the 5
second recording. It accentuates those fibers immersed in water and
with di↵using beads in close proximity to the fiber tips. Traces from
a selection of fibers (circled) were extracted to show intensity over the
recording. Fiber intensity varies as beads di↵use around the tips of
the fibers, showing a high signal-to-noise ratio and minimal crosstalk
between neighboring fibers.
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the distribution of the fibers before entering the tissue, may account for much of this

variability. In addition, as visible in Figure 2·4, the final distribution is not always

symmetric, which could reflect tissue heterogeneity, non-perpendicular implant angles

or non-perpendicular sectioning of the tissue.

At the fiber tips, we find NeuN-stained cell bodies in close proximity to the fiber,

suggesting the small diameter, flexible microfibers may evoke a smaller foreign body

response than that seen with larger glass or electrode implants (McConnell et al.,

2009; Lee et al., 2016), but more extensive histological analysis is needed in a range

of species. Because our current histology is unable to identify neurons in front of

(below) the fiber apertures, we instead rely on the perpendicular sections to identify

stained neurons adjacent to the fibers in the section closest to the tip of the implant,

providing an estimate of the presence of neural signals within range of the fiber

sensitivity profile. Future experiments may be able to reconstruct the full 3D path

of the fibers through the tissue, and as a result, the presence of neurons within the

fiber sensitivity profile.

We are limited in our ability to compare our data on NeuN-stained cells surround-

ing the implant with prior literature, due to the high number and distribution of the

splaying microfibers. NeuN staining is often evaluated around a single implant point,

and by measuring the labeled cell density in a 50 µm region surrounding the im-

plant; in a bundle of our splaying optical fibers, that region often contains additional

optical fibers. Even with this limitation, we observe NeuN-stained cell densities in

the surrounding region that exceed those described for a range of larger, less flexible

probes and implants (Biran et al., 2005; Winslow and Tresco, 2010; Welkenhuysen

et al., 2011; Harris et al., 2011). These findings suggest the splaying microfibers may

provide a less invasive option for interfacing with deep brain regions.

Our modeling results define the sensitivity profile of the fibers, indicating that
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fibers optically interface with a small volume of tissue near the tip of the fiber. By

superimposing the per fiber sensitivity profile in a geometry consistent with our his-

tology, our model allows evaluating the fiber bundle in terms of light delivery (relevant

for stimulation) and round-trip fluorescence (relevant to recording). Although in vivo

experimental performance will vary due to tissue autofluorescence, and due to in-

dicator brightness and density, our model provides intuition for the likely interface

properties. When used for stimulation, our Monte Carlo simulation suggests that

patterned illumination of a handful of fibers should precisely activate distinct subsets

of the neural population in the target brain region with minimal crosstalk. When

used for recording, the round-trip fluorescence will be dominated by neurons in the

40 µm region surrounding the fiber aperture; collectively, a bundle should act as a

high channel count fluorescence photometry interface capable of sampling fluorescent

indicator activity from hundreds or thousands of points throughout the target deep

brain region.

This potential for recording via the fiber bundle is prototyped by the measure-

ments of fluorescent microbeads di↵using in solution, suggesting that it is possible to

excite and measure fluorescence through the 5 µm cores. The traces from neighbor-

ing fibers show uncorrelated activity, consistent with the splaying of the fibers and

minimal crosstalk between fibers. Further work is needed to demonstrate the in vivo

utility of the optical microfibers for optogenetic stimulation and fluorescence imaging.

Collectively, these findings indicate that bundles of splaying optical microfibers

may provide an alternative to GRIN lenses for bidirectionally interfacing with deep

brain regions. Specifically, this technique may achieve a unique compromise in the

set of tradeo↵s associated with extending optical techniques to less superficial brain

regions. The method provides a high channel count interface distributed throughout

a non-superficial 3D volume with potentially reduced tissue damage relative to GRIN
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lenses. Additional histology in a wider range of species will be needed to compare

tissue response between implanted fiber bundles and GRIN lenses.

For both recording and stimulating, the self-splaying property means that the fiber

distribution will be incoherent—the position of the fibers is unknown once implanted.

Because of this, the fibers are not able to elucidate absolute spatial patterns in neural

activity. Despite not being able to identify the absolute position of the fibers in the

tissue during usage, selectively illuminating individual fibers (e.g., by scanning a laser

across the imaging surface with a galvanometer) and detecting the amount of light

collected by all other fibers might serve as a proxy for measuring relative distances

between fibers in the tissue (Heshmat et al., 2016).

When recording via the bundle, it is only possible to measure a single optical in-

tensity value for each fiber, and each fiber will act as the optical equivalent of a local

field potential. Yet, by examining correlations across fibers resulting from overlap-

ping light fields, the recorded signals may be amenable to known source separation

techniques such as independent component analysis (Hyvärinen and Oja, 2000) or

bayesian source separation (Knuth, 2002), achieving an optical form of “spike sort-

ing.”

For stimulation, a digital micromirror device (DMD) can be used to project pat-

terned light onto the polished imaging surface at the end of the fiber bundle. Given

attenuation measurements and sensitivity profile modeling, 2.5 µW optical power

could be coupled into a fiber to stimulate neurons localized near the fiber aperture.

The simulations presented here are limited to normalized, noise-free measurements

of the optical profile for individual fibers and assume uniform and consistent optical

probe expression within a target neural population modeled as point sources. Such

simulations enable estimating the the region with which the fibers interface, and the

relative intensity of excitation/stimulation light delivery and the relative round-trip
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fluorescence yield. By incorporating the expression and e�ciency of the relevant

fluorescent probe, the model is capable of calculating absolute power measurements

and evaluating signal to noise performance.

The histology presented here suggests a new class of brain implants based on

self-splaying microfibers, similar to previous work with nickel chromium aluminum

microelectrode brushes used for chronic electrophysiology in primates (Krüger, 2010),

but using 10–100 times more fibers per bundle, where each fiber is approximately 6

times less sti↵ (based on the area moment of inertia). A large number of ultrasmall

fibers can be implanted in the brain while minimizing damage near the active end of

the implant. This principle can apply to optical fibers as illustrated here, or to new

electrode arrays, such as the carbon fiber ultramicroelectrode array (Guitchounts

et al., 2013), or silicon carbide ultramicroelectrodes (Deku et al., 2017; Pancrazio

et al., 2017). As high density interconnect solutions are developed for ultramicroelec-

trode arrays, we anticipate seeing the principle of self-splaying microfiber interfaces

extended to the electrical domain (Wray, 2017).

Self-splaying optical microfibers compliment a number of new techniques aiming

to achieve high channel count optical interfaces, such as multi-site fiber photometry

(Guo et al., 2015) and optoelectronic probes with embedded waveguides or with on-

device, implantable light sources and detectors (Warden et al., 2014; Wu et al., 2015;

Segev et al., 2017). Technique development relevant to each of these methods will

have broader repercussions, such as on-device µLED illumination and CMOS sensors

to achieve fully head-mounted and wireless optical interfaces; silicon waveguides and

switches for lithographic manufacture of optical implants; and optical gratings to

better localize and multiplex signals (Segev et al., 2015). The self-splaying form factor

described here will benefit from these developments, with future iterations potentially

moving illumination and sensing optics to a wireless, head-mounted device.
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Chapter 3

Extracting individual neural activity

recorded through splayed optical

microfibers

3.1 Introduction

Rapid advances in genetic probes (Emiliani et al., 2015) and optical techniques for

recording and manipulating neural activity (Deisseroth et al., 2006) are central to

breakthroughs in systems neuroscience, providing tools for interrogation of precisely

targeted population and circuit dynamics. Yet such techniques are inherently limited

by the light scattering of tissue. To gain access to more deep brain regions, researchers

remove superficial tissue (Dombeck et al., 2010) or employee implantable optics, such

as GRIN lenses and prisms (Jung et al., 2004; Barretto et al., 2009; Andermann

et al., 2013). Such implants can damage or obliterate more superficial tissue, and

given dense local connectivity, may jeopardize local network dynamics in the tissue

surrounding the implant (Hayn and Koch, 2015; Hayn et al., 2017; Goss-Varley et al.,

2017).

A similar method, fiber photometry, permits access to deep brain regions for

recording bulk fluorescence via an implanted fiber optic probe (Adelsberger et al.,

2005; Cui et al., 2013; Adelsberger et al., 2014; Gunaydin et al., 2014). The technique

enables high sensitivity recording of calcium or other fluorescent indicators expressed

either in a target population or in long range axonal projections, but is often limited
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to a single channel and requires an implant on a scale of hundreds of microns, similar

to a GRIN lens. Subsequent variations have expanded the technique to record simul-

taneously from up to a dozen probes and/or from multiple regions (Guo et al., 2015).

We are working to further extend the capabilities of fiber photometry, substantially

increasing the number of simultaneous recording channels while decreasing the core

diameter, and hence the cross section, of each fiber. By implanting bundles of hun-

dreds or thousands of small diameter (<8 µm) optical microfibers, each fiber collects

bulk fluorescence from a small region of tissue surrounding the aperture of the fiber,

while displacing substantially less tissue (see chapter 2). During insertion, each fiber

follows a path of least resistance, splaying through the target brain region. These

bundles provide a minimally invasive way to sample fluorescence activity throughout

a target, non-superficial region of the brain.

With the capacity to record many more channels and to record more precisely

localized fluorescence, we move from a paradigm of interrogating bulk activity towards

one of measuring circuit-level neural encoding. Like single photon imaging or multi-

unit electrophysiological recordings, it is not possible to distinguish or limit recordings

to a single neuron. But much as spike sorting enables separating individual neural

activity, it is possible to incorporate knowledge of the target neural population and

the sensitivity profile of the fibers to gain a more comprehensive understanding of the

individual neural dynamics contributing to the recorded fluorescence signal.

When using a low density of fibers to interface with a low density cell population (a

small number of neurons expressing the fluorescent indicator), the sensitivity profile

of each fiber will be dominated by one or two neurons. Limited overlap between the

sensitivity profiles of neighboring fibers will preclude source separation, as there will

not be su�cient correlations between the fluorescence signals. Alternatively, when

using a higher density of fibers, the sensitivity profiles will have greater overlap,
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creating the opportunity to reverse the linear mixing of nearby neuronal signals.

Under such conditions, the recorded signal is amenable to source separation techniques

to extract individual neural traces.

In this chapter, we model bundles of hundreds or thousands of optical microfibers

distributed throughout a target brain region as an optical interface for collecting

fluorescence activity. Our model allows us to evaluate the interface properties of

the bundle, and how variables like the distribution of fibers and neurons e↵ects the

interface performance. Our model results suggest that with a low density of fibers,

each fiber will collect the optical equivalent of a local field potential, measuring bulk

fluorescence from a small number of neurons in close proximity to the fiber tip; as

the density of the fibers increases, overlaps between the fiber sensitivity profiles will

enable collecting su�cient information to separate individual neural activity.

3.2 Methods

Interface simulation. We calculate the fluorescence sensitivity profile for a single

fiber inserted into the tissue using Monte Carlo simulations of 10,000,000 photon

packets launched from the fiber as described in (Boas et al., 2002). The tissue is

modeled as a 1 mm3 volume broken into isotropic 5 µm voxels, with the tip of the

fiber positioned in the center of the volume. Photon packets are emitted from the

fiber with an angle determined by a Gaussian distribution reflecting the numerical

aperture of the fiber (0.377). The packet is modeled moving through voxels and at

each step can be either scattered or fractionally absorbed. Absorption is dominated

by hemoglobin in the blood, and as a result we calculate the absorption coe�cient

based on a 3% blood volume fraction (BVf) (Bouchet et al., 2010) with a 15 g/DL

hemoglobin concentration (Raabe et al., 2011) and a 70% oxygenation fraction. Given

the extinction coe�cient of hemoglobin (Kollias and Gratzer, 1999), our absorption
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coe�cients are µa = 0.337 mm�1 for 490 nm light, µa = 0.343 mm�1 for 512 nm light.

Scattering is described well in the literature, and we use a scattering coe�cient of

µs = 20 mm�1 with anisotropy g = 0.9 (Al-Juboori et al., 2013; Yi and Backman,

2012). By averaging the paths of all photon packets, we construct a three dimensional

photon distribution throughout the tissue.

The sensitivity profile for a bundle of fibers is obtained by taking the linear su-

perposition of the profile for a single fiber. Based on our prior histology documenting

the distribution of bundles of hundreds to thousands fibers (section 2.3.1), we esti-

mate the distribution of fibers in the tissue as a bivariate normal distribution in xy

space. To explore the interface properties under various conditions, we vary the fiber

density by changing the number of fibers for a fixed standard deviation of the spatial

distribution of the fibers. The fiber depth distribution will vary based on how the

fibers are cut prior to insertion; for our simulations, we model this variability as a

normal distribution of depths with a standard deviation of � = 15 µm. The angle of

each fiber is assumed to be uniform and parallel to the z-axis.

By superimposing the sensitivity profile on the tip of each fiber in the bundle

based on the splay distribution (Hillman et al., 2004; Burgess et al., 2008), we can

evaluate the interface properties of the full bundle. The bundle’s ability to deliver

excitation light to a given neuron is equal to the sum of all superimposed sensitivity

profiles; while the bundle’s ability to collect fluorescent emissions from a given neuron

is measured in terms of the few fibers that receive the majority of the emitted light

from that neuron. The combination of the excitation and emission forms a mixing

matrix:

Mi,j = hi,j

nX

k=1

gj,k (3.1)
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Where hi,j is the emission from neuron j collected by fiber i and gj,k is the excita-

tion from fiber k that reaches neuron j. For the analysis presented here, we assume

that excitation is static—that gj,k does not change over time.

Neural population simulation. Equipped with this model of the optical interface

properties for a bundle of microfibers, we can now evaluate the ability to measure

signals from a simulated neural population. We simulate a volume of tissue, of su�-

cient size to ensure that it includes all regions of non-negligible fluorescence sensitivity

(usually around 1.2 mm3), with a uniform distribution of neurons. We vary the den-

sity of neurons to understand the impact of signal density, but use densities that are

consistent with relevant subpopulations of interest (Walton et al., 2012; Kosubek-

Langer et al., 2017). Unless explicitly stated, simulations use a density of 250,000

neurons per mm3. We assume all neurons express the relevant genetic probe.

Neural activity is simulated as independent spike events (Bernoulli processes)

(Kass et al., 2014). The spike probability at each time step is calculated based on the

spiking frequency, which unless otherwise stated is 0.4 Hz. Spikes are then convolved

with a GCaMP6 waveform; unless otherwise stated, simulations use the GCaMP6f

waveform with a rise time (tpeak = 0.14 s) and an exponential decay (t 1
2
= 0.32 s)

(Chen et al., 2013). Fluorescence was modeled at 100 timesteps per second, and then

downsampled based on the simulated frame rate for the recording setup.

The fluorescence traces for each neuron are then combined via the mixing matrix

described in the previous section to produce fluorescence traces for each fiber. The

fluorescence collected by a fiber can be written:

yi =
nX

j=1

Mi,jxj (3.2)
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Where xj is the fluorescence for neuron j and yi is the fluorescence signal collected

by fiber i.

Source separation. Given the linear mixing process inherent in the fluorescence

signal collected by each fiber, the data are well suited to blind source separation

techniques to estimate the underlying neural fluorescence signals. To improve the

performance of the source separation, we developed an approach that incorporates

our knowledge of the mixing process and associated fluorescent indicator dynamics.

Similar to existing techniques that use deconvolution to estimate precise spike timing

(Pnevmatikakis et al., 2016), we initially inverse filter the recorded signal to remove

the fluorescent indicator dynamics. This step requires an estimate of the exponential

decay associated with the calcium response and indicator time constant, and can be

omitted for indicators where these dynamics are not known or are not stereotyped.

Y =MX where ~xi = ~w ⇤ ~si (3.3)

Z =MS where ~zi = ~w�1 ⇤ ~yi (3.4)

Where Y is the recorded fiber output, M is the mixing matrix, and X is the

fluorescence signal produced by convolving the underlying signal ~si of neuron i with

the indicator waveform ~w. By applying an inverse filter (~w�1), we produce matrix Z

that is equal to applying the mixing directly to the underlying signals.

Next, we apply the nonnegative independent component analysis algorithm (Plumb-

ley, 2003) to perform blind source separation under the constraints of nonnegativity.1

The algorithm first whitens the data, and then applies a series of orthonormal rota-

tions to reduce the error between Z and the reconstruction of Z from the rectified
1
The software is open source and accessible at https://github.com/nathanntg/

fiber-source-separation (DOI: 10.5281/zenodo.1314756)
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(nonnegative) components of S.

Having separated the independent signals, we can then apply the waveform filter

(~w) to produce fluorescence traces that correspond with the identified independent

components.

As there are many more neurons than fibers, separating all neural activity is an

underdetermined problem. This technique is limited to extracting as many neural

traces as there are fibers.

Evaluating source separation. The evaluation of the source separation must con-

sider both that the output of the source separation is a small subset of the underlying

neural signals, and the underdetermined nature of the blind source separation. To

this end, we calculate the correlation coe�cients of each separated signal (~̂xi) with

each true, simulated fluorescence trace (~xi). The quality of the separation is then

evaluated based on how many of the separated signals have a su�ciently high cor-

relation with a true trace. In the results section, we evaluate threshold choices and

how they impact the number of extracted “true” signals.

To understand the source separation in the context of an experimental question, we

further evaluate the separated signals on a spike detection task. Using the approach of

detecting threshold crossings as a proxy for neural spikes, we can compare threshold

crossing events in the separated signal with those in the matched underlying neural

trace. This forms a binary classification task that can be measured in terms of a

receiver operating characteristic plot and the accompanying area under the curve

(Han, ). The area under the curve (AUC) represents how well threshold crossings

on the separated signal can be used to approximate threshold crossings on the true

neural fluorescence; an area under the curve of 0.5 indicates poor performance (unable

to separate), while a value of 1 indicates perfect performance.

As a control, we compare correlations between the separated signals with a novel
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set of randomly generated traces.

3.3 Results

Relevant experimental technique. The relevant experimental technique being

modeled, including the optical interface, implant methods and motivating histology,

is fully described in section 2.2. In brief, we use commercially available flexible

endoscopes (Schott 1534180), which are manufactured by dissolving an acid soluble

glass between the individual fibers in coherent imaging bundles. This produces an

endoscope with thousands of dissociated fibers that come together in polished imaging

surfaces at both ends (figure 3·1b); each fiber has a core (diameter: 5.1 µm), a cladding

(thickness: 1 µm) and the remnants of the acid soluble glass (thickness: 0.4 µm). By

cutting the bundle in half, the dissociated fibers are exposed (figure 3·1c).

After cutting away a fraction of the fibers in the bundle (based on the desired

implant size), the remaining fibers are anchored together 4–5 mm from the tip using

a bead of light-cured acrylic (Flow-It ALC, Pentron Clinical). The bead is secured

to a digital manipulator in a stereotaxic rig. An anesthetized animal is mounted

in the rig, and a craniotomy and durotonomy are opened above the target brain

region. The fibers can then be slowly lowered into the tissue; the fibers have enough

rigidity to enter the tissue without bending. Histology from implants shows that

each fiber follows a path of least resistance, spreading through the target brain region

(figure 3·1d).

The other end of the fiber (a ferrule and polished imaging surface) can be mounted

below an objective in either a traditional fluorescence microscope or a purpose built

optical configuration to provide excitation light and collect emission light via a CMOS

sensor (figure 3·1a).
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Figure 3·1: Illustration of the described method, using a bundle of
optical microfibers as a multichannel, deep brain recording interface.
(a) A standard fluorescent imaging configuration is used to interface
with the fiber bundle. The polished imaging surface is mounted below
an objective. Excitation light from an LED or other light source passes
through a filter cube and is coupled into the fiber bundle; fluorescent
emissions return through the objective, pass through the emission arm
of the filter cube and are recorded by a camera. The fiber bundle
consists of dissociated fibers, each with a diameter of 8 µm. The indi-
vidual fibers are implanted into the target brain region and secured to
the skull. (b) The polished imaging surface as seen by the camera. (c)
A bundle of 18,000 fibers prior to implant with gray silicone sheathing
cut away. (d) Histology at the tip of a bundle implanted to 2.95 mm
in a zebra finch, showing 530 optical microfibers (annotated in green).
The fibers displace substantially less tissue (orange circle is cross sec-
tion of displaced tissue) than existing optical techniques for recording
from such a large volume of tissue.
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Figure 3·2: Left: A single fiber tip shown in a fluorescein solution
with blue light (a 446–486 nm) emitted from the fiber. Due to the
near total internal reflection, the light exits the tip of the fiber. The
image, captured by a fluorescence microscope with a GFP filter, reveals
the fluence excitation profile for the cut fiber. Center: The linear
fluence excitation profile of a single fiber, calculated via a Monte Carlo
simulation of photon packets propagating through water. Right: The
linear fluence excitation profile from a single fiber, calculated via a
Monte Carlo simulation of photon packets propagating through the
tissue. At each step, a photon packet may scatter or be absorbed based
on tissue properties estimated for 490 nm light. Note that incorporating
tissue scattering properties does not dramatically alter the profile, as
the scale is below the mean free path of light in the brain.

Fiber profile model. In figure 3·2, we show a 2D slice of this 3D photon distribu-

tion and compare it with a similarly generated profile of fluence in water (i.e., with

negligible absorption and scattering (D&A Instrument Company (text), Linda Worl-

ton (layout), 2008)). The profile in water and tissue are similar, reflecting the fact

that the relevant length scales are below the mean free path of light in brain tissue.

In addition, we compare the two computationally generated profiles with an image

of a single fiber in a fluorescein solution. Blue light is shone through the fiber, and

the illuminated fluorescein is imaged through a 500-550 nm emission filter, revealing

a distribution consistent with the model.

Interface model. Calculating the fluorescence sensitivity profiles for various dis-

tributions of optical microfibers, consistent with prior histology, we are able to model
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and evaluate the number and relative brightness of neurons contributing to the de-

tected fluorescence signal. Figure 3·3 shows the modeled distribution of fibers and the

relative brightness of individual neurons under di↵erent sets of conditions: two fiber

densities (varying the number of fibers with the same standard deviation of splay)

and two neural densities (reflecting di↵erent potential subpopulations). As the neural

population is assumed to be uniformly distributed, increasing the density of neurons

results in an increase in the number of neural traces being collected by the implant.

Increasing the number of fibers has a more pronounced e↵ect, as it increases the mag-

nitude and uniformity of the excitation power delivered to the region and achieves a

more dense sampling of fluorescence from the target neural population.

This relationship between the number of fibers and the number of neurons con-

tributing fluorescence is explored further in figure 3·4, with each point based on the

average of five randomly generated distributions of fibers. As the number of fibers

increases, we initially observe a rapid increase in the number of neurons whose fluo-

rescence contribution to a given fiber is above illustrative thresholds, due both to the

increased sampling and to the increased excitation power. These e↵ects eventually

saturate as the distribution of fibers is kept fixed and all neurons within the field of

view of the fixed distribution of fibers are contributing fluorescence signals.

These results demonstrate that the number of neurons contributing to the fluores-

cence signal increases more rapidly than the number of fibers. Under low densities of

fibers, each fiber collects from a distinct set of neurons and the low excitation power

means that the signal will be limited to the 2–3 neurons closest to the fiber aperture.

But as the fiber density increases, the paradigm shifts to one where many neurons

are contributing fluorescence to multiple nearby fibers (figure 3·4; right). As multiple

neural traces are present in the signal from a single fiber, it becomes beneficial to be

able to apply source separation techniques.
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Figure 3·3: The neural population we expect to interface with through
a bundle of splayed optical microfibers. The spatial distribution of
fibers (small pink dots) is based on the bivariate normal distribution
seen in histology slices (section 2.3.1), and is shown in relation to the
neurons (large circles) that are contributing fluorescence to the collected
signal above a 1% threshold. Neurons are colored based on their fluo-
rescence signal contribution to the fiber normalized by the maximum
fluorescence signal that would be recorded when a cell is immediately
under a fiber. Columns show two distinct fiber counts (with same splay
parameter, � = 150 µm); rows show two distinct cell densities.
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Figure 3·4: By increasing the number of fibers, while holding the
splay diameter constant (� = 150 µm), the bundle can interface with
more neurons. The visibility of a neuron is calculated based on their
fluorescent contribution to a fiber normalized by the maximum fluores-
cence signal that would be recorded when a cell is immediately under
a fiber. Each point is the average of five randomly generated fiber im-
plant distributions. Left: The solid lines plot how many neurons are
clearly visible (given di↵erent thresholds, represented as di↵erent color
lines) to at least one fiber in the bundle. The dotted lines plot how
many neurons are clearly visible to two or more fibers. Right: How
many neurons are visible to a single fiber in the bundle. As the num-
ber of fibers increases, the excitation power increases and more neurons
become visible.
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For source separation to be e↵ective, there needs to be overlap in the sensitivity

profiles of fibers and, as a result, neurons contributing fluorescence to multiple fibers.

The dashed lines in figure 3·4 show how many neurons contribute fluorescence to two

or more fibers. As the number of fibers increases, this value also increases, suggesting

that source separation becomes more feasible.

The breakdown of the fluorescence signals recording by an average fiber is shown

in figure 3·5, depicting the relative contribution of the neurons that most strongly

interface with the fiber. Each fiber collects the fluorescence from many neurons.

Figure 3·5 shows that the brightest cell is on average 50–100% brighter than the

next brightest cell contributing fluorescence to a given fiber. As the density of fibers

increases (and, as a result, increases the uniformity of the excitation power), the drop

o↵ in brightness from subsequent neurons in the sorted list of neurons becomes less

pronounced. We can look at this same breakdown from the other perspective: how

many fibers capture the fluorescence from one neuron, as shown in figure 3·6. With a

low number of fibers, the overwhelming majority of fluorescence from a neuron reaches

a single fiber. As the density of fibers increases though, this shifts such that multiple

fibers capture the fluorescence from a single neuron, permitting the application of

source separation approaches.

Source separation. Given a higher density of fibers, we can apply the blind source

separation technique described in the methods section (section 3.2) to approximate

individual neural components that may be contributing to the recorded fluorescence.

Figure 3·7 shows a simplified model of the linear mixing of hypothetical neural traces

(based on a Bernoulli spiking process convolved with the GCaMP6f waveform), and

the subsequent results of the the source separation technique.

In order to assess the performance of the source separation, the separated signals

must be compared to all underlying neural activity signals to see if the extracted sig-
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Figure 3·5: The contribution of individual neurons to the signal
recorded through a single fiber. Values are normalized to the first
(brightest) neuron visible to the fiber. Increasing the number of fibers
does not substantially change the distribution, but delivers more light
which increases the brightness of the neurons further from the tip of
the fiber. Each fiber captures fluorescence from a number neurons, with
an exponential drop o↵ in the relative contribution of neurons. Each
plot represents the average distribution of neural contributions for each
fiber, averaged across fibers and across five randomly sampled distribu-
tions of fibers. The four subfigures show increasing numbers of fibers,
with a constant amount of splay (� = 150 µm).
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Figure 3·6: Each neuron primarily contributes fluorescence to a single
fiber. Each box represents the strength of the interface between a given
neuron and a fiber (round trip fluorescence), sorted in descending order
of signal contributed to each fiber and normalized so that the strongest
interface (the first fiber) is 100%. Plots are based on five sampled
distributions of fibers, evaluating the 50 brightest neurons (most visible
to a single fiber, in terms of round trip fluence). The four subfigures
show increasing number of fibers in a bundle, with a constant amount
of splay (� = 150 µm).



58

z [µm]

x 
[µ

m
]

20 µm

0 5 10 15 20

Time (s)

3

2

1

Neural traces

0 5 10 15 20

Time (s)

3

2

1

Signals via fibers

0 5 10 15 20

Time (s)

3

2

1

Separated signals

Figure 3·7: Simplified model used to exemplify the source separation
process. Top left: A simple 2D configuration of fibers and neurons to
demonstrate the source separation technique. Three fibers are shown
in gray, each with contours representing their sensitivity profile. Three
neurons (blue, red, yellow) are positioned near the fibers, while many
neurons are distributed further from the fibers (creating background
fluorescence). Top right: Traces for the three neurons of interest
generated as a random Bernoulli process convolved with a GCaMP6f
waveform. Bottom left: The signals recorded from the three fibers,
representing a linear mixing of all the neurons based on the relative
sensitivity. Bottom right: The three outputs of the source separation
process, sorted to most closely match the original neural traces.
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nals correspond with the activity of specific neurons. We match extracted signals with

underlying neural traces based on correlations; extracted signals having a su�ciently

high correlation (r2 � 0.6) are considered an accurate match. Figure 3·8 compares the

percentage of extracted traces that are accurate matches for three scenarios, under

a number of di↵erent model parameters (fiber counts and neural firing rate). First,

we show a control comparing with novel neural traces, confirming that identified ac-

curate matches are not simply a probabilistic result of the large neural population

being modeled; with novel data, none of the traces accurately match, indicating that

matches are not false positives. Next, we assess accurate matches between the signals

recorded via the fibers (without any source separation) and the underlying neural

traces; as suggested by the earlier modeling, some fibers are dominated by 1 or 2 neu-

rons, and produce accurate matches without additional processing. Finally, applying

the nonnegative independent component analysis produces the highest percentage of

accurate matches across parameters.

Because this sort of evaluation may be sensitive to the r2 threshold, we also

evaluated the utility of the matched traces for di↵erent thresholds. A receiver oper-

ating characteristic curve (figure 3·9) evaluates the performance of using accurately

matched, separated signals to detect action potentials (via threshold crossing) for a

range of r2 thresholds. As the r2 accuracy threshold increases, the matched separated

signals provide a more useful input for threshold detection, at the expense of reducing

the number of separated signals. These results motivated the selected threshold of

0.6. As a control, the same threshold crossing detection was repeated comparing the

separated signals to unrelated, novel random traces. The area under the curve (AUC)

was between 0.5–0.51 for all r2 thresholds (not pictured), consistent with the lack of

a relationship between the ground truth and separated signals.
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Figure 3·8: Percentage of extracted signals that accurately match an
underlying neuron, based on a correlation of r2 � 0.6. The first column
(blue) is a control, showing no accurate matches when comparing fiber
intensity with unrelated neural activity. The second column (red) shows
the accuracy of the raw fiber intensity values; as some fibers are domi-
nated by 1–2 neurons, there is a high percentage of traces that closely
match underlying neurons. The third column (yellow) demonstrates
the benefit of blind source separation, increase the number of accu-
rately extract signals. These results are consistent and robust across
various model parameters, including number of fibers and neural firing
rates. Error bar shows std. dev. over 3 iterations.
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Figure 3·9: By increasing the r2 threshold used to match separated
signals with underlying neural activity, we observe an increase in accu-
racy in spike detection based on threshold crossing for spike detection,
but a decrease in the number of matched neuronal signals. By alter-
ing the spike detection threshold, we can generate a receiver operating
characteristic curve measuring the accuracy of the spike detection al-
gorithm. Using di↵erent r2 thresholds to match separated signals with
the simulated neural fluorescence traces, we can generate di↵erent ROC
curves. By lowering the r2 threshold, we match more traces (N), but
sacrifice accuracy (measured as area under the curve, or AUC). Aver-
age of five simulation based on 100 fibers with a splay of � = 125 µm
in a region with a cell density of 250,000 neurons per mm3.
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3.4 Discussion

Bundles of splaying optical microfibers present a versatile extension to existing fiber

photometry methods, enabling the sampling of fluorescence from hundreds or thou-

sands of points throughout a target brain region, while displacing less tissue than

traditional, large diameter photometry ferrules or GRIN lenses.

When using a small number of fibers, the method achieves a high channel count

variation of fiber photometry (Guo et al., 2015), collecting fluorescence activity from

a small region of tissue at the tip of each fiber. As shown in figure 3·4, with a sparse

target population or with sparse expression of the fluorescent indicator, this signal

may correspond with just one or two cells.

As the number of implanted fibers increases, or as the density of the implanted

fibers increases, the recording paradigm shifts. More fibers results in greater excita-

tion power distributed over a larger volume of tissue (and, as a result, more fluorescent

signal from more neurons), and higher fiber density results in increased overlap be-

tween the sensitivity profiles of neighboring fibers. With this shift, the fluorescent

signal from a single cell is more likely to contribute to multiple fibers (figure 3·5).

These correlations enable application of source separation techniques to estimate in-

dividual neural activity.

Blind source separation techniques are widely used in neuroscience for decoding

of neural signals (Makeig et al., 1999), for identification of functional and anatom-

ical connectivity (Randlett et al., 2015), and for analyzing electroencephalography

(EEG) signals (Makeig et al., 1999), as well as for applications more akin to the

one described here. Source separation—specifically, independent component analysis

(ICA) (Hyvärinen and Oja, 2000)—has been applied in processing single- and multi-

photon microscopy to identify and extract individual cellular contributions akin to

spike sorting in electrophysiology (Mukamel et al., 2009; Xu et al., 2012; Patel et al.,
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2015b).

These existing blind source separation techniques can be applied directly, as the

overlapping sensitivity profiles associated with each fiber act as a linear mixing of

fluorescence activity from the surrounding tissue. Yet the physical distribution of the

splayed optical microfibers and the mechanics of the fluorescent indicator provide use-

ful constraints that can further inform the source separation process. Specifically, we

adopt an approach that incorporates the dynamics of the fluorescent indicators and

the nonnegativity of the mixing process. First, we use an inverse filter to remove the

fluorescence waveform. Our approach assumes consistent and known waveform dy-

namics, which enables the inverse filtering; should this assumption not apply, source

separation techniques designed for convolutive mixtures become relevant and enable

estimating both the mixing and convolution steps (Mitianoudis and Davies, 2003;

Ozerov and Fevotte, 2010). We then use a nonnegative independent component anal-

ysis algorithm to estimate an unmixing matrix to separate the recorded signals into

independent components. This achieves a linear unmixing that is consistent with the

constraints of the recording mechanism, where the individual neural sources additively

contribute to the recorded signals.

Similar techniques and model constraints are frequently used in traditional cal-

cium imaging, using non-negative matrix factorization and deconvolution to extract

neural activity and estimate underlying spiking (Pnevmatikakis et al., 2016). An-

other approach that may be applicable is Bayesian source separation, which seeks to

estimate the mixing matrix and source signals by maximizing the probability of both

the underlying source signals, and the resulting mixing of these source signals (Knuth,

2002). Our observations about the sparseness of the mixing process, as well as any

existing knowledge regarding the target population activity, can be incorporated into

the prior.
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In exploring source separation techniques, we also looked at what factors impact

the source separation performance. Unsurprisingly, increased recording duration im-

proves the performance. More relevantly though, source separation performance is

best with sparse signals (low spiking frequency and fast time course fluorescent indi-

cators, such as GCaMP6f). Such sparse signals provide discrete, di↵erentiable events

that are conducive to estimating the underlying mixing process.

To evaluate the performance of the source separation for a realistic analysis task,

we compared spike detection analysis on the separated signals and on the true, un-

derlying neural traces. Separated signals are first matched with the underlying neural

traces based on correlations; the majority of the separated signals have a strong cor-

relation (r2 > 0.6) with one of the true neural traces, and as a result, achieves a

high level of accuracy in the threshold crossing task. Of course, analysis of real world

data would not have the benefit of being able to identify the extracted signals that

match the underlying neural activity, but these results suggest that the hundreds or

thousands of channels of data collected through the fiber bundle have the potential

to reveal neuron-level dynamics of interest.

Further work can look at incorporating additional information into the source

separation process. For example, it may be possible to estimate the initial mixing

matrix through empirical measurement of correlations between fibers. Specifically,

by shining light down a single fiber and looking at light collected by the other fibers,

it may be possible to estimate the relative spatial configuration of the fibers and, as

a result, the correlations that we would expect in the linear mixing process.

More broadly, our work here has laid a modeling framework for evaluating high

channel count fiber photometry as a means of interfacing with deep brain regions. By

estimating the overlap of neighboring sensitivity profiles and hypothetical neural pop-

ulation dynamics, we can describe both the likely composition of the signals collected
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by individual fibers and the larger mixing process that occurs. One limitation of our

study, although likely minor, is that we simulated neural signals as arising from point

sources. Further work is needed to explore the full impact of the fluorescent signals

arising from large and complex neurons that may alter both the mixing process and

the feasibility of source separation.
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Chapter 4

In vivo recordings show calcium dynamics

recorded via splaying optical microfibers

4.1 Introduction

Optical techniques for recording fluorescent probes are a cornerstone of rapidly ad-

vancing systems neuroscience. With an expanding suite of genetically encoded probes

and techniques for targeting expression, it is possible to optically record calcium,

voltage and neurotransmitter dynamics in a precisely selected neuronal subpopula-

tion (Emiliani et al., 2015; Gong et al., 2015). Yet these techniques are inherently

constrained by the scattering and absorption properties of tissue, constraining optical

techniques to more superficial brain regions.

Three-photon imaging, which is at the cutting edge of optical techniques, can

record from intact brain tissue at depths exceeding 1 mm (Horton et al., 2013; Wang

et al., 2017). But to reach regions beyond this depth, current research relies on either

removing superficial tissue (Dombeck et al., 2010) or implanting prisms or lenses

(Jung et al., 2004; Barretto et al., 2009; Andermann et al., 2013; Cui et al., 2013).

Such invasive implants can compromise or obliterate adjacent regions and potentially

jeopardize local connectivity relevant to the neural population being investigated.

In an e↵ort to extend optical techniques to deep brain regions that both preserves

the ability to interface with hundreds of neurons—and, as a result, di↵erentiate neural

coding throughout the region—and that lessens the impact on local network dynamics
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and neighboring brain regions, we proposed a new optical interface in section 2.2.1.

Specifically, we constructed implants from bundles of hundreds or thousands of small

diameter optical microfibers (as small as 6.8µm). When implanted, each fiber moves

independently and follows a path of least resistance, causing the fibers to splay as they

are inserted. At a depth of 2.9 mm, a bundle of 1,000 fibers can spread over 1 mm

in diameter. Because of the small diameter and flexible fibers, the fibers displace less

tissue and elicit less tissue response, while still enabling interfacing with a large 3D

volume of tissue.

Each fiber has a core and a cladding, achieving near total internal reflection,

allowing the fiber to interface with a small region of tissue below the fiber aperture.

Outside of the brain, the fibers come together in a polished imaging surface held in

a metal ferrule, which can be fixed below the objective of a traditional fluorescent

microscope.

In chapter 2, we have described histology evaluating the splay of the fiber bundles

and the presence of NeuN-stained cells in close proximity to the fiber tips; in chap-

ter 3, we have modeled the interface capabilities and properties of the bundles. In

this chapter, we share initial in vivo recordings of fluorescence, including intravenous

fluorescent agents, calcium-linked fluorescence during cortical spreading depolariza-

tion (CSD) and sensory evoked fluorescence resulting from forepaw stimulation. The

intravenous fluorescent agent and CSD elicit bright, discernible increases in fluores-

cence. We find weak, but significant fluorescent activity associated with forepaw

stimulation when using larger diameter fibers, and identify potential approaches to

translate these successes to the small diameter fibers.
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4.2 Methods

4.2.1 Fibers

The fiber implants are constructed from two commercially available sources, resulting

in two variations with distinct fiber diameters. Bundles of 8 µm fibers are made from

flexible medical endoscopes with 4,500 individual fibers each (Schott 1534180). The

bundles are made as a coherent imaging bundle with an acid soluble glass between the

individual fibers, in addition to the standard core and cladding; during manufacturing,

the acid soluble glass is dissolved leaving the dissociated fibers, which increases bundle

flexibility (Gerstner et al., 2004). Each fiber has a core diameter of 5.1 µm, and a

numerical aperture of 0.377. The second variation, bundles of 37 µm fibers, are made

as incoherent bundles with approximately 350 fibers individual fibers (Fiberoptics

Technology Incorporated FTIIG24471). Each fiber has a core diameter of 34 µm and

a numerical aperture of 0.6. In both cases, the ends of the fibers come together in

polished imaging surfaces held in ferrules, and the dissociated fibers are covered in a

flexible silicone or plastic sheathing for protection.

We cut the bundles in half with a razor, allowing access to the individual fibers.

The protective sheathing is cut back, exposing a su�cient length of fibers for the

implant. Depending on the desired implant size, a fraction of the bundle of fibers is

cut away, again using a razor. The remaining fibers are secured in a cohesive bundle

by placing a bead of light-cured acrylic (Flow-It ALC, Pentron Clinical) around the

individual fibers, approximately 1.5 mm from the tips of the fibers. Once secured, the

fibers can be further shaped to influence the final tissue geometry; we frequently cut

fibers with a slight bevel ( 100 µm di↵erence in length) to ensure that fibers sample

fluorescence from a range of depths in the target region.
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4.2.2 Surgery

Animal care and experimental procedures were reviewed and approved by the Insti-

tutional Animal Care and Use Committee (IACUC) of Boston University (protocols

17–017 and 17–026). Recordings were made in seven adult mice, including 1 wild

type, 3 Thy1-GCaMP3 (Jackson stock 029860), 2 Thy1-GCaMP6f (Jackson stock

024339) and 1 Thy1-GCaMP6s (Jackson stock 024275). Mice were anesthetized with

isoflurane during surgical procedures (3% induction, 1–1.5% maintenance). During

surgery, the body temperature was monitored via a rectal probe and maintained at

37�C by a homeothermic blanket. The animal was placed in a stereotaxic frame for

the surgery and implant procedure. A metal head post was secured to the temporal

bone for immobilizing the head during recording. Contralateral to the head post,

a craniotomy was created at either the barrel cortex or the forepaw region of the

primary somatosensory cortex, sized to match the fiber bundle implant (1–1.5 mm).

The dura within the craniotomy was removed.

The fiber bundle was held in a manipulator attached to the stereotaxic rig, with

the fiber bundle positioned over the durotomy and the fibers orthogonal to the surface

of the brain. The fibers were slowly lowered into the tissue at a rate of approximately

500 µm per minute. After the fibers were lowered to a depth corresponding with

cortical layer V (500–600 µm), the bundle was secured to the skull surrounding the

craniotomy with acrylic.

In three animals, the occipital bone was thinned, contralateral to the headpost

and ipsilateral to the fibers, for laser speckle imaging.

In five animals, a frontal craniotomy was made, contralateral to the head post, to

allow application of KCl in order to induce a cortical spreading depolarization (CSD).

Until the CSD induction, the opening was covered with gel-foam soaked with artificial

cerebrospinal fluid (ACSF).
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4.2.3 Recording

During recording, mice were anesthetized with either isoflurane (1%) or ↵-chloralose

(0.5-1%, IV, 0.1 mL per 30 min, Sigma-Aldrich C0128). During imaging, the body

temperature was monitored via a rectal probe and maintained at 37�C by a homeother-

mic blanket.

Fiber recording. The ferrule and polished imaging surface were mounted below

a traditional fluorescence microscope (Olympus) with either a 10⇥ (PL L, 0.25 NA)

or a 20⇥ (Plan, 0.4 NA) objective, depending on the imaging surface size. The

fibers were illuminated by a broadband white LED (Thorlabs SOLIS-3C) at 100%

brightness, with a GFP filter cube in the imaging path (Semrock BrightLine GFP-

4050B, 466/40 excitation, 525/50 emission, 495 dichroic). Excitation power at the

objective was 9 mW. Emissions were recorded by a sCMOS camera (Hamamatsu

ORCA-Flash4.0 v2) with 2⇥2 binning, resulting in a final frame of 1024⇥1024 16 bit

pixels. Exposure varied across experiments, but was between 50–100 ms per frame.

Frames were acquired using HCImage (Hamamatsu) and saved as CXD files.

Intravenous fluorescein isothiocyanate (FITC). To assess fiber sensitivity to

fluorescent agents in the vasculature, the fibers were implanted in the mice (N =

2) and recorded while injecting fluorescein isothiocyanate (FITC)-labeled dextran

(molecular weight 10 kDa or 2 MDa, Sigma-Aldrich FD10S and FD2000S) intra-

venously (50–100 µL of 5% wt/vol in phosphate-bu↵ered saline), either via the tail

or retro-orbitally (Yardeni et al., 2011).

Inducing cortical spreading depolarization (CSD). To measure calcium flu-

orescence during a cortical spreading depolarization, a pellet of KCl was placed on

the surface of the brain of the GCaMP transgenic mice (N = 5) at the frontal cran-
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iotomy. A drop of ACSF was placed on the pellet to dissolve the pellet. This approach

is known to produce repeated CSDs in anesthetized mice (Karatas et al., 2013). The

pellet was prepared as described in (Karatas et al., 2013), by placing 30 mg of KCl in

an Eppendorf, adding 10 µL of distilled water and allowing the water to evaporate.

Laser speckle imaging. In order to verify the cortical spreading depolarization,

blood flow was monitored via laser speckle flowmetry. The technique is performed

as described in (Dunn et al., 2001; Karatas et al., 2013). A 785 nm laser diode

(Thorlabs L785-P090 controlled by Thorlabs LDC210C) was used to illuminate the

skull in a di↵use manner. The region was imaged via a 10⇥ objective (M Plan Apo,

0.28 NA) and recorded using a CMOS camera (Basler acA2040-90umNIR). A set of

15 raw speckle images was acquired at a rate of 90 Hz, with 5 ms exposure time

and averaged for further processing. New sets were acquired at 1-second intervals,

and were converted to spatial speckle contrast (K) using a sliding grid of 7⇥7 pixels

(Tom et al., 2008). Speckle contrast images were converted to correlation time values

(using the formula 1/K2), which are inversely and linearly proportional to mean blood

velocity. Relative blood flow changes in an ROI (⇠0.2⇥0.2 mm) were calculated by

dividing correlation time values at each time point by the baseline value (calculated

by averaging 60 images acquired over 1 min before initiation of CSD).

Laser speckle frame acquisition was synchronized with the fiber recording by ac-

quiring frame synchronization pulses from both cameras over the duration of the

recording.

Evoking sensory activity. To measure calcium fluorescence evoked by sensory

activity, two wire electrodes were inserted into the forepaw contralateral to the fiber

implant in the transgenic mice (N = 1). The electrodes were connected to a stimu-

lator (Grass Astro-Med S48) via a constant current isolation unit (Grass Astro-Med
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PSIU6), configured to output 20 ms, 0.6–1.2 mA square pulses every 2 seconds. The

stimulation was visually confirmed through observing associated muscle contractions.

Stimulation pulses were synchronized with the fiber recording by acquiring two

signals channels, one corresponding with the fiber CMOS frame acquisition and one

corresponding with the stimulation pulses, over the duration of the recording.

4.2.4 Analysis

Fiber recordings were converted from CXD files to raw binary image sequences using a

custom Python script. Frames were then processed via a custom pipeline implemented

in MATLAB (Mathworks). During the first pass, frames were motion corrected us-

ing an implementation of the Scale-Invariant Feature Transform (SIFT) algorithm

(Vedaldi and Fulkerson, 2008; Lowe, 1999; Lowe, 2004) and then calculating the 1st

and 99th percentile pixel intensities across all video frames. By calculating a pixel

range image (by subtracting the 1st percentile intensity from the 99th percentile in-

tensity for each pixel), fibers with dynamic fluorescent activity are clearly visible.

MATLAB’s circle finding algorithm (Atherton and Kerbyson, 1999) is used to au-

tomatically draw regions of interest (ROIs) around fibers with high variability. To

minimize artifacts from motion correction, ROIs are shrunk to 75% of their original

size. The analysis pipeline then makes a second pass through the video, applying the

same motion correction transform and averaging the pixel intensity for all pixels in

each fiber region of interest. The end result is an intensity time course for each fiber

of interest. Traces are converted to �F/F0, where F0 corresponds with the median

intensity in the period prior to the fluorescence onset.

To test the statistical significance of the sensory evoked behavior, a Student’s t-

test was performed comparing the background subtracted fluorescence in the 100 ms

after the stimulation to the background subtracted fluorescence in the 100 ms before

the stimulation for those fibers where visual inspection identified a potential time
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locked change in fluorescence (N = 2).

4.3 Results

In order to demonstrate and evaluate the recording capability of the bundles of optical

microfibers, we performed a series of recordings across a range of externally evoked

fluorescent events.

Intravenous fluorescein (FITC). Sensitivity to fluorescent agents in the vascula-

ture was measured by injecting high molecular weight fluorescein conjugated dextran,

while recording fluorescence via the implanted fibers. Figure 4·1 shows fluorescent

traces for a retro-orbital injection of 2 MDa FITC. The fluorescent bolus is visible 1–2

seconds after injection, and has more sustained fluorescence than the higher molec-

ular weight FITC (not shown). The fluorescent bolus corresponded with an average

increase in fluorescent intensity of 0.22⇥ the F0 intensity (std. dev. 0.011) in the 25

brightest fibers.

Induced cortical spreading depolarization (CSD). In transgenic animals ex-

pressing a calcium sensitive fluorescent probe, the ability to record calcium fluores-

cence was measured during a cortical spreading depolarization by dissolving a pellet

of KCl on the surface of the brain, which is known to evoke multiple CSDs in anes-

thetized mice (Karatas et al., 2013). We recorded for 20 minutes, beginning at the

time of application of the KCl. In four of the five animals, we observed one or more

fluorescent events that corresponded with a CSD. Fluorescence, shown in figure 4·2,

increased over 24.1 s ± 16.8 (std. dev), and recovered more slowly, over 87.7 s ± 17.0

(std. dev). This timing is consistent with previous measures of intracellular calcium

in layer V cells during CSD (Gniel and Martin, 2010), but with a slower rise time

consistent with the fact that a fiber will collect fluorescence from multiple neurons in
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Figure 4·1: Detection of fluorescent agent in vasculature via
implanted fibers. At time 0, the mouse received an IV injection of
high molecular weight FITC retro-orbitally. Recordings via 8 µm fibers
show an immediate and sustained increase in fluorescence. Each line is
the �F/F0 intensity for a single fiber from the recording.
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Figure 4·2: Cortical spreading depolarization (CSD) evokes a
fluorescence increase. Three recordings from Thy1-GCaMP6f mice
implanted with fibers after dissolving a pellet of KCl on the surface of
the brain. Each line is the �F/F intensity for a single fiber from the
recording. Within three minutes of application, a distinct fluorescence
increase is visible. By recording relative blood flow via laser speckle,
it is possible to confirm the presence of a CSD. (a) Fluorescence as-
sociated with a single CSD, recorded via 8 µm fibers. (b) and (c)
Synchronized recording of laser speckle and fiber fluorescence via 8 µm
fibers, showing a CSD and two subsequent fluorescent events. (d) and
(e) Synchronized recording of laser speckle and fiber fluorescence via
37 µm fibers, showing two CSDs and an additional fluorescent event in
between.

its sensitivity profile.

As a CSD propagates across the cortex at approximately 2 mm per minute (Ochs

and Hunt, 1960; Pietrobon and Moskowitz, 2014), we can look at the acquired images

of the fiber bundle for timing di↵erences in fiber fluorescence that corresponds with

this propagation. Figure 4·3 shows frames from the acquired video, illustrating the

propagation of the CSD.

Relative blood flow measured via laser speckle near the fiber implant site provided

confirmation of the CSD. Because the laser speckle was recorded at a second location,

there is a time o↵set associated with the CSD propagation. The CSDs identified via

blood flow correspond closely with recorded fluorescence increases, but we also observe
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Figure 4·3: Frames of polished imaging surface show progres-
sion of cortical spreading depolarization (CSD). Three minutes
after dissolving a KCl pellet on the brain of a Thy1-GCaMP6f mouse,
the fluorescence associated with a CSD was visible via the implanted
8 µm fibers. Four background subtracted frames selected from the first
33 seconds of the CSD show the spatial propagation of the depolariza-
tion.
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additional subsequent fluorescent events that do not have the corresponding change

in relative blood flow.

For the 8 µm fibers, the observed fluorescence increase is 0.154⇥ the F0 intensity

(std. dev. 0.03) in the 25 brightest fibers. For the 37 µm fibers, the increase is 0.577⇥

the F0 intensity (std. dev. 0.19).

Sensory evoked activity. To record fluorescence evoked by sensory stimula-

tion, we recorded from the primary somatosensory region of cortex of a transgenic

mouse expressing a calcium sensitive fluorescent probe while electrically stimulating

the contralateral forepaw. We align and average fluorescence from 0.4 s before until

1.6 s after the stimulation pulse. When recording from the 8 µm fibers, we did not

observe fluorescent activity corresponding with the stimulation pulses. When record-

ing from the 37 µm fibers, we see a small, but significant increase in fluorescence over

baseline for two fibers (figure 4·4). The increase in fluorescence averages 0.001⇥ the

F0 intensity (p  0.005), based on 100 aligned stimulation pulses.

4.4 Discussion

These initial recordings demonstrate the potential utility of bundles of optical mi-

crofibers as a method for recording fluorescence activity; each fiber delivers excitation

light and samples fluorescence from a small region of tissue at the fiber aperture.

First, we demonstrate the ability to sense a fluorescent agent in the vasculature

by intravenously injecting high molecular weight FITC. This initial proof of concept

shows the fibers are functional and sensitive to a high fluorescence event, and may

have promise for recording dynamics associated with the vasculature.

Next, we turn our attention to sensing genetically-expressed fluorescent probes

(in this case, GCaMP6). In these experiments, we explore the most intriguing aspect

of the splaying optical fiber bundles, where the fibers can sample neural activity
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Figure 4·4: During forepaw stimulation, two 37 µm fibers show
time locked fluorescent activity. The three traces show stimulation-
aligned average fluorescent intensity of distinct fibers after background
subtraction over 100 trials. The fibers are implanted in primary so-
matosensory region of a Thy1-GCaMP6s mouse, and the contralateral
forepaw receives a 20 ms, 1.2 mA pulse at time 0. The shaded region
representing the 95% confidence interval by bootstrapping trials. The
top two traces have a significant increase in fluorescence over pre-trial
frames (t-test, p  0.005). Bottom, right: image of the polished imag-
ing surface with the three corresponding fibers highlighted.
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throughout a 3D volume of tissue while retaining intact neurons in close proximity

to the fibers and, as a result, decreasing the likelihood of a large tissue response that

may interfere with local connectivity and network dynamics (see section 2.3.1).

During a bright and distributed event such as a CSD, we see a distinct increase

in fluorescence that is consistent with previously described calcium dynamics during

CSD (Gniel and Martin, 2010). The change in fluorescence was bright—clearly visi-

ble while recording, before application of any preprocessing steps such as background

subtraction. In addition to seeing the fluorescence corresponding with CSDs identi-

fied via the laser speckle recording, we see additional, subsequent increases in calcium

fluorescence that do not have an accompanying change in blood flow. This poten-

tially suggests repeated influxes of calcium and/or depolarization that may warrant

additional investigation.

The CSD recordings also allow a comparison across the two types of fibers. When

using the larger diameter fibers (37 µm), the change in fluorescence is almost four

times greater than when using the smaller diameter fibers (8 µm). This is consistent

with the wider aperture enabling greater light acceptance. From the greater sen-

sitivity of the large fibers, we can observe additional dynamics in the fluorescence;

specifically, after the first CSD-evoked fluorescence increase, the fluorescence does

not fully return to baseline. This may reflect the fact that intracellular calcium levels

drop quickly after the CSD, but full restoration of pre-CSD concentrations takes more

than 5 minutes, or may reflect variability in the response to the CSD across cortical

layers (Gniel and Martin, 2010).

We observed CSDs in four of the five animals following application of the KCl. Two

of the five animals expressed GCaMP3 (as opposed to GCaMP6f) and were excluded

from the quantification of brightness given the di↵erent properties of the fluorescent

probe. In one of these GCaMP3 mice, we did not observe an increase in fluorescence
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following application of the KCl pellet. We believe that if a CSD occurred, it was

after our 20 minute recording session. Following the recording session, we discovered

that the homeothermic blanket malfunctioned and the mouse’s body temperature

dropped by 2�C, which may account for the lack of CSD.

Finally, the results recording sensory evoked fluorescent activity are more mixed,

in part a result of the small sample size (one animal, with two recording sessions,

one in each hemisphere). With the larger diameter fibers (37 µm), we did observe

statistically significant stimulation-locked fluorescence, but the �F/F change was

orders of magnitude smaller than the CSD recording through the same fibers. For

the smaller diameter fibers (8 µm), no identifiable stimulation-locked fluorescence was

observed.

A number of factors likely contribute to the limited or absent fluorescent signal,

and future work can improve the signal. All recordings were taken under isoflurane

anesthesia, which suppresses sensory evoked cortical activity (Sitdikova et al., 2013).

During the recordings, we attempted to transition to ↵-chloralose, but were unable

to sustain the animal’s anesthetized state; as a result, we continued light isoflurane,

potentially interfering with the cortical response to the forepaw stimulation. During a

subsequent round of recording via the larger diameter fibers, we found no stimulation-

locked fluorescence, consistent with an observed deepening in the animal’s anesthesia

and corroborating the potential role of anesthesia in suppressing sensory evoked sig-

nals.

A second challenge is that all recordings reported here are acute. Acute record-

ings may be detrimentally impacted by bleeding, swelling or other acute reactions to

the implant that have not yet been evaluated. Consistent with previously reported

histology (section 2.3.1), we believe that the strength of the optical microfibers as

an interface comes from their chronic stability. Future work will focus on building
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stable chronic implants for mice to enable recording from awake, behaving animals,

eliminating the e↵ects of anesthesia and allowing the surrounding tissue to stabilize

after the implant process.

Third, the fiber implant process is currently guided solely on coordinates. Given

the dimpling that can occur during implant (section 2.2), the implant depth would

benefit from closed loop feedback. By monitoring fluorescence while lowering the fiber

bundle into the tissue, it may be possible to more precisely target a specific cortical

layer.

In addition, excitation power recorded through the larger fibers may have been

adversely a↵ected by a mismatch between the objective NA (0.25) and the fiber NA

(0.6), resulting in lost excitation signal. Correcting this mismatch may increase the

coupling of light from the fiber into the objective, and hence may improve the recorded

signal.

These initial recordings demonstrate the feasibility of bundles of hundreds or thou-

sands of microfibers as an interface to optically access 3D volumes of tissue. Incorpo-

rating the insights from these initial recording attempts will enable improving surgical

protocols and moving towards an awake, behaving paradigm. With these iterations,

we hope to improve sensitivity to sensory-evoked fluorescence activity, such that it

can be c recorded through both the small and large diameter fibers.
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Chapter 5

Interface and software for near-real-time

processing and feedback

5.1 Introduction

Acute recordings from bundles of optical microfibers (chapter 4) show the potential

of the interface to extend optical access to deep brain regions. The splaying fibers

deliver excitation light, and collect fluorescent emissions during a cortical spreading

depolarization, enabling visualizing the associated calcium dynamics and propagation

of the depolarization. Yet a large part of the value proposition of the interface is the

potential to record fluorescence in awake, behaving animals.

In order to achieve such recordings, a new optical configuration is required that

will allow recording animals during a complex behavioral task. This necessitates a

way to physically manage the fibers such that the bundle is protected from physical

damage, while maintaining optical access to the individual fibers and allowing the

animal to freely move within their enclosure.

Specifically, we intend to use the fibers to record fluorescence activity in singing

zebra finches. Their ability to freely move about their enclosure is crucial; when

constrained, the animals will rarely sing. To this end, we have designed a recording

interface that holds a reinforced fiber bundle in a passive commutator above the bird’s

enclosure. As the bird moves around its cage, the fiber can rotate below the objective

of a traditional fluorescence microscope.
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Custom acquisition software controls synchronized acquisition of video and analog

data; in the case of the zebra finches, we use the analog data channels to record audio,

which is both used for triggering acquisition and for subsequent analysis—specifically,

to align calcium fluorescence across song renditions. The software is also capable of

near-real-time analysis of acquired video frames, extracting fiber intensity values,

which can be used to trigger behavioral feedback or create a basic brain machine

interface.

Based on the design configuration used to record from seven zebra finches, each

for a minimum of a week, we describe a hardware and software configuration that

enables longitudinally recording fluorescence from an awake behaving animal.

5.2 Methods

Animal care and experimental procedures were approved by the Institutional Animal

Care and Use Committee (IACUC) of Boston University (protocols 14-028 and 14-

029). Fibers were implanted in nine zebra finches. Of those, we chronically recorded

from seven birds via the fiber interface described in the next section; two were ex-

cluded due to issues with early design iterations, where the birds risked getting tangled

in the fiber bundle and hence were not connected to the microscope.

5.2.1 Chronic fiber interface

To use the bundles of optical microfibers to interface with awake behaving animals,

we have built and piloted a configuration where the animal is housed in an enclosure

below a traditional fluorescence microscope with the ensheathed bundle running from

the microscope to the animal (figure 2·1). The bundle is secured to the animal using

anchor points around the craniotomy. To avoid physical stress on the optical fibers,

the bundle is reinforced with a strip of polyimide (DuPont Kapton, 0.005” thick),



84

Figure 5·1: A diagram of a prepared polyimide strip to rein-
force a chronic fiber bundle implant. A strip of polyimide is used
to absorb physical stresses, protecting the bundle of fibers. The fiber
bundle is threaded through the small holes and the bottom hole (right)
is used to anchor the polyimide strip to the skull.

prepared as shown in figure 5·1. The strip similarly runs from the skull implant

points to the fluorescence microscope above the enclosure.

The polyimide strip is cut slightly shorter than the fiber bundle, so that when the

animal moves or twist, the force will be primarily exerted on the strip rather than

the bundle. To secure the fiber bundle to the polyimide strip, we punched 1.5 mm

holes in the strip, and thread the fiber bundle through the holes. This ensures that

the slack in the fiber bundle does not dangle in a way that might interfere with the

animal’s behavior.

Depending on the duration of the recording session, the fiber can either be fixed

below the fluorescence microscope or can be mounted in a low-friction passive com-

mutator, constructed from precision ball bearings (figure 5·2), that allows the fiber

bundle to rotate as the animal moves. Given the flexibility of the fibers, the poly-

imide reinforcement strip is beneficial here to translate the rotational torque up to

the commutator.

To correct for the rotation of the fiber, rotational motion correction is applied to

the recorded video (described in section 5.2.4).

In situations requiring longer exposure times, the rotation of the fiber may be

problematic. We tested a further variation that used a servo to apply a rubber

“brake” pad to the passive commutator during recording, temporarily preventing

rotation.
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Figure 5·2: Commutator built with low-friction, precision ball
bearings allows fiber to rotate. A passive commutator constructed
with precision ball bearings holds the ferrule and polished imaging sur-
face below a microscope objective. As the animal moves about the
enclosure, the fiber can freely rotate, while remaining level in the focal
plane of the microscope.
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5.2.2 Acquisition hardware

The ferrule and polished imaging surface were held using a passive commutator (fig-

ure 5·2) below a traditional fluorescent microscope (Olympus, 20⇥ objective) with

a broadband white LED (Thorlabs SOLIS-3C) set at 100% brightness and a GFP

filter cube (Semrock BrightLine GFP-4050B, 466/40 excitation, 525/50 emission, 495

dichroic). Excitation power from the objective was measured at 9.16 mW; given the

core size and count, this corresponds with coupling approximately 0.3 µW into each

fiber. Fluorescence activity was recorded either with a USB compatible CMOS cam-

era (3rd eye electronics, MC900 paired with DM420 frame capture device) configured

for an exposure of 33 ms resulting in a 30 frames per second recording of 640⇥480 8

bit pixels or with an sCMOS camera (Hamamatsu ORCA-Flash4.0 v2) configured for

2⇥2 binning and an exposure of 50 ms, resulting in a 20 frames per second recording

of 1024⇥1024 16 bit pixels.

When recording via a standard USB CMOS, the custom acquisition software de-

scribed in the next section was used to control the camera and acquire video. When

using the ORCA-Flash sCMOS, the custom acquisition software triggered acquisition

and recorded frame synchronization information, while the raw video stream was ac-

quired and written to disk by HCImage (Hamamatsu) on a separate computer. This

allowed isolating the data-intensive (40 megabytes per second) video acquisition from

the analog signal acquisition and analysis.

5.2.3 Near-real-time software

To manage and trigger acquisition, and to do near-real-time signal processing, we

created custom image acquisition software that runs on the macOS operating system

(figure 5·3).1 Leveraging the native AVFoundation framework, the software is capable

1
The software is open source and accessible at https://github.com/gardner-lab/

video-capture
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of communicating with a wide range of USB video acquisition hardware, including

both analog-to-digital frame grabbers and cameras. The software can capture video

or video synchronized with multi-channel analog data (including either audio or other

analog data). Video and analog data are written to disk in MPEG-4 container files

with video encoded at full resolution either uncompressed, or using the H.264 or

lossless MJPEG Open DML codecs, and audio encoded using either the AAC codec

or the Apple Lossless format with a sampling rate of up to 96 kHz. Simultaneously,

the software writes metadata including frame timing, region of interest intensity and

analysis parameters to a text file (CSV format).

The software also communicates with a microcontroller (Arduino Uno Rev3 or

2560 Mega) via a USB-to-serial connection. The microcontroller allows the software

to control additional peripherals, including light source brightness, camera parameters

(such as exposure) and the commutator.

The software is able to perform near real-time analysis on both the video frames

and the analog input channels—these channels enable low-latency, video-aligned ac-

quisition of audio, external TTL pulses, electrophysiology or behavioral data. For

example, in experiments where we record fluorescence in songbirds, we use the ana-

log channels to acquire audio and trigger acquisition based o↵ song detection (by

processing audio through a short-time Fourier transform to calculate the ratio of

power in frequency bins associated with song [1–10 kHz] to the power of frequency

bins outside the song range). The microcontroller is used to activate the excitation

light source, restricting illumination to periods of singing and, as a result, minimizing

photobleaching.

During monitoring and acquisition, the software can perform low-latency com-

putational analysis of both the video frames and analog input. In the case of the

video, the user interface provides the ability to draw regions of interest (ROIs) onto
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Figure 5·3: User interface of acquisition control software capa-
ble of near-real-time analysis. The software controls acquisition-
related peripherals, including USB camera sensors, light sources and
microcontroller breakout boxes, and manages synchronized acquisition
of video and analog signals. During recording, the software can process
video frames, extracting multiple annotated regions of interest, and
can process analog signals, such as performing audio template match-
ing. Analysis is used to trigger acquisition or external feedback, acting
as a basic brain machine interface.
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the field of view and processing rules in the form of symbolic equations that can be

used to trigger external feedback (e.g., sound or reward). At the start of acquisi-

tion, the software converts the regions of interest into indices corresponding with the

ROI masks and parses the symbolic equations into an abstract syntax tree (AST)

for optimization and evaluation. Each frame is read in YCbCr color space, providing

direct access to the luma component (Y). Using vector optimized instructions when

available, the software accumulates average pixel intensity for each region of inter-

est and then evaluates the syntax tree and outputs the appropriate feedback value.

Figure 5·3 shows the software configured to compare �F values for two regions of

interest corresponding with two fibers.

Given the broader range of analog analysis and applications, the software does

not have a graphical user interface for defining analog signal analysis, but the code

provides clear extension points. We have extended and open sourced versions of the

software that use the analog signals to acquire and process audio. Acquired audio is

converted to a spectral representation through a two-taper short-time Fourier trans-

form (STFT). These analysis steps leverage the vDSP Accelerate framework, which

utilizes vectorized instructions whenever possible to achieve low latency processing.

We use the spectral representation to trigger acquisition (during singing) and to pro-

vide behavioral feedback. The spectral representation can serve as an input to a

neural network trained to precisely identify salient audio (i.e., a syllable or other vo-

calization) (Pearre et al., 2017); upon detection, the software can provide aversive

feedback (such as burst of white noise) to perturb behavior.

To evaluate the software latency, we flash an LED in the field of view of the camera,

while recording the output trigger controlled by the software to measure when the

LED intensity is detectable. The pulse driving the LED also triggers acquisition on

an oscilloscope (Tektronix TBS 1022), which is set to averaging mode (128-trigger
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average) in order to collect latency data. In addition, external logging in the software

is used to evaluate processing time for specific steps in the analysis pipeline (such as

ROI extraction). Audio processing is evaluated as described in (Pearre et al., 2017),

using recordings of songs with a ground truth annotations on the second channel.

The ground truth signal triggers oscilloscope acquisition, again averaging over 128

trials to build a distribution of timing performance.

5.2.4 Analysis pipeline

Given the large file size in chronic recordings (200 GB), we designed a custom set of

tools to aid in file processing and analysis.2 We created a Python script to convert

the Hamamatsu CXD file format to raw binary files, allowing direct frame indexing.

Next, a set of custom MATLAB classes allows composing a node based processing

graph, which allows each frame to be processed in isolation, minimizing the amount

of memory needed to work with the videos.

Our standard pipeline involves iterating over video frames twice. During the first

pass, raw video frames are passed into a Scale-Invariant Feature Transform (SIFT)

(Vedaldi and Fulkerson, 2008; Lowe, 1999; Lowe, 2004) motion correction algorithm,

capable of correcting the rotation of the fiber bundle associated with the passive

commutator. The transformation matrices associated with the motion correction is

cached for the second pass. The motion corrected frames are passed to statistical

analysis nodes. The analysis nodes accumulate statistics on each pixel, including

range, mean and percentile intensities. These statistics enable identifying high vari-

ability pixels (corresponding with fibers collecting fluorescence), which can then be

used to define regions of interest for subsequent analysis.

During the second pass, the algorithm again applies the motion correction trans-

2
The software is open source and accessible at https://github.com/nathanntg/

fiber-pipeline (DOI: 10.5281/zenodo.1314759)
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form to each frame, and extracts the mean pixel intensity associated with each re-

gion of interest. Additional nodes in the software pipeline allow optionally applying

smoothing, downsampling or background subtraction, depending on the desired out-

put.

5.3 Results

The chronic fiber interface configuration and associated video acquisition and analysis

software were used to record from seven zebra finches for 7–23 days each (mean:

17 days). The recording results are not presented here, but the sessions provided an

opportunity to evaluate and revise the fiber interface for longitudinal awake behaving

recordings.

5.3.1 Chronic fiber interface

The implanted fibers remained well secured over the course of the recording, and the

setup provided the necessary freedom of motion to allow the birds to sing. For all seven

animals, we recorded fluorescence via the fibers and synchronized audio. Acquisition

was automatically triggered by singing, and the animals performed hundreds of song

renditions per day.

After 23 days implanted in an awake behaving animal, we remeasured the optical

attenuation. The optical attenuation of the used fibers was measured to be 6.54 dB

(compared with 3.78 dB pre-recording, as measured in section 2.2.1).

5.3.2 Analysis performance

To evaluate the near-real-time analysis and feedback, we recorded signals that include

a ground truth reference signal, enabling evaluation of accuracy and performance.

Region of interest (ROI) video analysis was evaluated by measuring the time from

LED onset to software feedback. The average time to trigger a feedback stimulus is
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Figure 5·4: Video analysis produces feedback in 24 ms, in-
cluding exposure time. To measure the latency of the video analy-
sis functionality in the acquisition software, an LED was flashed in the
field of view, while timing the delay until detection of the output TTL
indicating detection. (a) Black: voltage driving LED light flash; blue:
cumulative density function (CDF) of TTL output. The latency from
LED activation to output TTL is 23.9 ± 3.9 ms (std. dev). This is
consistent with the 33 ms exposure time. (b) Of the total latency, the
image processing to extract mean intensity from ten cell-sized regions
of interest contributes an average of only 0.17 ms; much of the ROI
feedback latency is a reflection of the frame rate and acquisition time.

23.9 ± 3.9 ms (std. dev.), including frame exposure, digitization, transmission, data

acquisition and software processing. This latency reflects the intrinsic limitations of

a 33 ms exposure time (which accounts for 16.5 ms of the delay) as well as the time

spent capturing and decoding the video, and communicating an output TTL via the

microcontroller. Figure 5·4 depicts video analysis latency.

Of the total ROI latency, we can break this down in terms of specific steps in

the analysis pipeline. Data acquisition, region of interest processing, and feedback

triggering all occur within an average of 1.7 ms after frame capture (95% confidence:

<11 ms). This variability stems primarily from video encoding and storage, where
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the codec and write bu↵ering necessitate increased processing time for a subset of

frames. An additional source of variability is processing time, which has a smaller

impact and is shown in figure 5·4b, relates to the number and complexity of the defined

regions of interest. As the number and size of the regions of interest increases, the

processing time increases. In tests involving ten cell-sized regions of interest, the

average processing time was 0.17 ± 0.03 ms (std. dev.).

For audio processing, a similar evaluation can be performed to measure average

latency for a detection task. Specifically, we used a version of the acquisition software

extended with a trained neural network to identify birdsong syllables (Pearre et al.,

2017). The detection software was configured to process 1.5 ms chunks of audio, send-

ing a rolling window of spectral features through the neural network to detect the

target syllable. Using a recording that includes ground truth data, the latency of de-

tection events could be compared with actual syllable presentation. Figure 5·5 shows

the latency for two di↵erent TTL output modalities: upon detection, the acquisition

software could either generate a TTL pulse via the connected microcontroller or gen-

erate a signal on the audio line out (useful for playing aversive white noise feedback).

Via the audio line out, the average latency is 4.2 ± 2.1 ms. Via the microcontroller,

the average latency is 0.0 ± 1.8 ms.

5.4 Discussion

Given the challenges of connectorizing or aligning fiber bundle ferrules, each with a

lattice of thousands of individual fibers, we have developed and described an approach

to perform chronic recordings in awake behaving animals by placing the enclosure

below a fluorescence microscope. Custom software is then used to either manually

or automatically trigger acquisition during a behavioral paradigm, recording video of

fluorescence activity and, when applicable, synchronized analog data (such as audio).
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Figure 5·5: Audio analysis produces feedback in under 5 ms.
The acquisition software extended with a neural network based syllable
detection tool, was evaluated on annotated data, allowing measurement
of the latency between actual syllable presentation and the detection
TTL pulse. If the TTL pulse was delivered via the attached microcon-
troller, average latency was 0.0 ± 1.8 ms; if delivered via the audio line
out, the latency increased to 4.2 ± 2.1 ms.
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The software has the ability to do low latency processing of both video and analog

signals, which can be used to control acquisition or provide feedback to the animal.

Using this setup, we were able to chronically monitor seven birds and trigger ac-

quisition based o↵ singing. Assessment of the fibers after three weeks of acquisition

show an increase in attenuation, suggesting that even with the polyimide reinforce-

ment strip, either the implant or recording process results in wear and tear on the

bundles of optical microfibers, increasing attenuation. It may be valuable to collect

more measurements to track the decline in attenuation, and potentially improve the

chronic interface configuration to better protect the fibers.

With software capable of near-real-time analysis of fluorescence activity, the fibers

can be used as a brain machine interface (BMI) in which an animal controls an

external device through the calcium fluorescence measured via the implanted fibers;

for example, this could be used to allow songbirds direct control over sound generation

(Clancy et al., 2014). Other applications of the software could include closed-loop

stimulation experiments that seek to optically disrupt specific patterns of activity

when detected.

In our tests, the latency of triggering o↵ fluorescence activity was limited by the

sensor of the camera, about 23.9 ± 3.9 ms (figure 5·4). For many experiments, this

response latency is acceptable. In the songbird, for example, the sensory-motor la-

tency from pre-motor neural activity in HVC to sensory evaluation of the auditory

signal processed in the basal ganglia is a minimum of 32–50 ms (Andalman and

Fee, 2009). Based on these estimates and published accounts of conditional feedback

experiments in songbirds, the time-delay should provide a learnable brain machine in-

terface (Ölveczky et al., 2005; Tumer and Brainard, 2007; Sakata and Brainard, 2008;

Sober and Brainard, 2009). However it remains to be seen whether the timing jitter

in the current configuration is acceptable for brain machine interface experiments in a
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system as precise as the songbird. For the zebra finch, relative jitter between premotor

commands and auditory feedback is just a few milliseconds. For some experiments,

lower latency and lower variability may be desirable, which can be achieved through

a shorter exposure (higher frame rate). To further decrease jitter, the acquisition

process can potentially be moved to a deterministic real-time operating system.
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Chapter 6

Conclusions

6.1 Splaying optical microfibers as an interface

In this thesis, we have introduced a novel deep brain optical interface. Rather than

using a single monolithic implant, the presented bundles of optical microfibers have

a smaller cross section and greater flexibility. During insertion, each fiber moves

independently, splaying throughout the tissue. The other end of the fibers are arrayed

in a regular lattice on a polished imaging surface that can be readily mounted under a

traditional fluorescence microscope. As each fiber has a core and cladding, achieving

near total internal reflection, the fiber carries light to the aperture, where it can

optically interface with a small region of tissue.

In chapter 2, we reviewed the fiber configuration, surgery and histology. Results

from implanted zebra finches showed that at a depth of around 3 mm, a bundle of

a hundreds or thousands of fibers spreads over 1 mm in diameter with each fiber

sampling fluorescent activity from small regions of tissue distributed across a larger

3D volume. The immunohistochemistry finds neurons in close proximity to the fiber

tips in animals chronically implanted, showing less tissue impact than comparable

results from larger diameter, rigid electrode implants. These results are a promising

indication of the preservation of local connectivity and network dynamics.

Based on the distribution of fibers seen in the histology, we modeled the interface

properties in chapter 3. As the number of fibers increases and, hence, the density of

fibers, a bundle will deliver more uniform excitation power to the tissue and neigh-
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boring fibers will have greater overlap in the collected signals. Under such conditions,

it becomes possible to apply blind source separation techniques to extract individual

neural contributions. By combining knowledge of the underlying fluorescent indicator

waveform and mixing process, we use a form of non-negative independent component

analysis to unmix simulated neural activity.

In chapter 4, we presented initial in vivo recording data from mice, including

fluorescence collected due to both intravenously injected agents and induced cortical

spreading depolarizations. In addition, we showed fluorescent activity time locked

to sensory stimulus when using larger diameter fibers. These signals demonstrate

potential for the fiber bundles as a recording interface, but also highlight additional

areas for improvement (such as refining the optics to achieve a higher contrast to

background ratio) and reproducing the same success using smaller diameter fibers.

Finally, in chapter 5, we presented a recording configuration developed to chroni-

cally interface with animals via the bundles of optical microfibers, including a commu-

tator and acquisition platform capable of synchronized video and analog data capture.

Near-real-time analysis software allows processing acquired signal, and can be used

to present feedback or run brain machine interface experiments.

Overall, we believe that the bundles of optical microfibers achieves a unique set

of tradeo↵s for optically interfacing with deep brain regions. Small, flexible optical

microfibers preserve more of the connectivity and dynamics in adjacent brain regions,

while extending optical access in a way that enables freely behaving experimental

paradigms. For our work in zebra finches, this allows recording from birds without

constraining them in a way that discourages or prevents singing; yet we anticipate

that these same benefits will translate to additional species and systems neuroscience

inquiries.
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6.2 Future work

This work has presented a new implant and technique for deep brain imaging, along

with a basic survey of relevant histology, modeling and initial recordings. But these

are early steps, and future work will continue to adapt this technique to new use cases

and greater potential.

6.2.1 Additional in vivo recordings

In chapter 4, we presented initial in vivo recordings showing fluorescence activity

from intravenously injected fluorescent agents and from genetically encoded calcium

indicators during both a cortical spreading depolarization and a forepaw stimulation

experiment. The forepaw results are promising, but also highlight challenges in terms

of contrast-to-noise and the need to move to chronic implants with awake behaving

mice.

More work is needed to adapt the chronic recording interface described in chapter 5

to new animal models, including mice. The dexterity of mice and their tendency to

chew on objects necessitates more active protection of the fiber implant.

Such an interface will allow collecting additional sensory-evoked fluorescence ac-

tivity, without the potential confounds of anesthesia. Being able to repeat recordings

in chronically implanted animals will allow the brain to recover post-implant and will

provide an opportunity for testing design iterations to understand how they impact

signal quality.

With further refinement, the technique can eventually be applied to fundamental

systems neuroscience questions in deep brain regions.
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6.2.2 Controlling implant and splay

The splaying properties of the fibers have been evaluated with a specific deep brain

region in mind—the basal ganglia of the zebra finch. But from the histology, we ob-

serve variability in the distribution of the fibers at a depth of 3 mm. Further analysis

and technique development may provide greater control over the splay, potentially

reducing variability and improving the compatibility of the optical microfibers with

shallower or deeper implants. Specifically, it may be beneficial to construct a mesh

or perforated structure that can be mounted on the surface of the brain, which will

serve to both pre-splay and reinforce the fibers prior to their entering the tissue. Such

a structure may enable more reproducible splaying patterns.

In addition, such a structure may benefit implants at di↵erent depths. Currently,

much of the fiber distribution comes from the slow spreading process as the fibers are

lowered through the tissue. For shallower implants, pre-splaying the fibers will ensure

a wide distribution without requiring the depth to achieve the fiber distribution. For

deeper implants, fibers longer than 5 mm are more likely to buckle. By having a

structure around the fibers before they come into contact with the tissue, it may

reinforce the fibers and reduce the chance of buckling when accessing regions at a

depth greater than 5 mm.

6.2.3 Stimulation and structured illumination

The splaying optical microfibers have the ability to both deliver excitation light to

the tissue, and to collect fluorescent emissions from neurons surrounding the fiber

aperture. In concert, this enables fluorescent recording, which has been the primary

focus of this e↵ort. But given that the fibers can deliver excitation light, they also

provide a compelling interface for manipulating neural activity using opsins or other

light-gated ion channels.
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Collectively, illumination of the full bundle can modulate neural activity across a

large region. But the real potential of the bundles as a stimulation interface comes

from selectively illuminating a subset of the fibers, enabling precise activation or

silencing of a small number of neurons (see the modeling in section 2.3.2). Specifically,

coupling 2.5 µW of 470 nm light into a fiber should provide su�cient optical power to

activate channelrhodopsin over a 18,000 µm3 region surrounding the tip of the fiber.

This becomes especially powerful when combined with fluorescent imaging, using

a fluorescent indicator with orthogonal wavelengths. Imaging during a behavior en-

ables identifying those fibers which pick up motor or sensory locked activity; then

selective silencing of those neurons via stimulation can help disambiguate their con-

tribution to the behavior. The multimode fibers enable a bidirectional interface,

allowing simultaneous fluorescence imaging and stimulation.

For stimulation, a similar configuration can be used to the chronic recording inter-

face described in chapter 5. But rather than focusing excitation light across the full

fiber bundle, a digital micromirror device (DMD) can be used to project patterned

light onto the polished imaging surface at the end of the fiber bundle. If mounted on

a commutator, real time registration or a rotation encoder can enable adapting the

stimulation pattern to the rotational position of the fiber.

6.2.4 Multiplexing

In addition to enabling patterned stimulation, structured illumination may have the

potential to enable better source separability during recording by iterating through

illumination patterns. Inspired by the increased resolution achievable using structured

illumination microscopy (Gustafsson, 2000; Gustafsson, 2005; Saxena et al., 2015),

we believe that there may be potential to “multiplex” activity by rotating through

di↵erent patterns that illuminate distinct permutations of the fiber bundle.

Each illumination pattern will correspond with a distinct mixing matrix, based on
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the di↵erences in excitation power. Applying the same source separation techniques

described in chapter 3, it should be possible to estimate each of the mixing matrices

and, as a result, separate out more of the underlying neurons contributing to the

fluorescence.

Under such a multiplexed recording paradigm, there will be a tradeo↵ between

decreased overall excitation (due to illuminating only a subset of the fibers) and less

temporal resolution (as some neural activity may be lost in the time before returning

to a specific illumination pattern. As a result, such recording may benefit from using

modeling to identify an optimal tradeo↵ between number of illumination patterns

and excitation power, and from using a slower time course fluorescent indicator (e.g.,

GCaMP6s).

6.2.5 Head mounted optics

As with the move toward head-mounted miniature microscopes to record fluorescent

activity (Ghosh et al., 2011; Cai et al., 2016; Liberti III et al., 2017), the bundles

of splaying optical microfibers may be most useful once the recording infrastructure

is su�ciently adapted to a head-mounted recording configuration. At least initially,

this would most likely apply to recording or bulk stimulation, which have similar

requirements to existing miniature microscopes.

The design of a miniature fluorescence microscope closely mirrors the larger fluo-

rescence microscopes we use to image through the fiber bundles (figure 6·1). An LED

light source provides excitation light through an excitation filter and dichroic, while

fluorescent emissions return, passing through the dichroic and an emission filter to a

CMOS. Existing miniature microscopes benefit from open and adaptable adaptable

designs (Cai et al., 2016; Liberti III et al., 2017), and with potential modifications to

the optical path to couple light into the fiber bundle, may provide a small, low cost

option for chronically imaging fluorescent activity in awake behaving animals.
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Figure 6·1: Miniature, head-mounted microscope with poten-
tial to record from fiber bundle. Existing head-mounted miniature
microscopes have a compact design modeled on traditional single pho-
ton fluorescence microscopy. By adapting the objective optics, such
a configuration could provide a stable, chronic interface for imaging
through a bundle of optical microfibers. (Liberti III et al., 2017)
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The biggest challenge to building a head mounted microscope for imaging via the

fiber bundles is ensuring su�cient sensitivity to measure fluorescent signals and, ide-

ally, to enable processing the signals via the described source separation techniques.

As shown in chapter 4, existing sensory-evoked recordings have a low CBR, necessi-

tating highly sensitive sensors and low noise recording environments. With further

work, it may be possible to improve the CBR and may move into a regime where

the fibers are compatible with the optics and sensors available for headed mounted

microscopy.

If achieved, a head mounted microscope interface for recording from the fibers

would o↵er a number of advantages and overcome some of the chronic recording chal-

lenges described in chapter 5. Specifically, an animal could be implanted such that

only the fiber ferrule was exposed above the skull. The miniature microscope could

either be permanently or temporarily fixed above the ferrule and polished imaging

surface; if temporarily fixed, the fiber ferrule should likely be secured under a protec-

tive cap when the microscope is not in place to protected against accidental damage.

Such a configuration would eliminate the vulnerable fibers and the risk of physical

stress on the bundle. The shorter fibers will have less attenuation, and likely less

degradation in attenuation over time. And given that the optics and microscope are

fixed to the head, this would eliminate the need for both the optical commutator and

the need to correct rotational motion (an electric commutator or wireless miniature

microscope would still be needed). Overall, a head-mounted recording configuration

has tremendous potential for longitudinally interfacing with awake behaving animals,

without the risk of the animal getting tangled or damaging the fibers.
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Syllable detector. Calculates a spectrogram for incoming audio and processes it
using a neural networks in order to detect specific “syllables.” Uses vector operations
to achieve millisecond latency and low CPU load. This is used in lab to provide
precisely triggered auditory feedback to zebra finches. (2016)

Find audio. A set of MATLAB tools for matching instances of an auditory template
in a longer signal, as well as warping the time of two auditory sequences to common
timestamps. Includes a C MEX implementations of the dynamic programming algo-
rithm. (2016)

Video capture. Software to interface with fluorescence microscopes for video and
data acquisition. Performs near realtime processing of inputs, including region of
interest extraction and audio processing, enabling construction of basic brain ma-
chine interfaces. This is used in lab in conjunction with head-mounted miniature
microscopes. (2015)

Dynamic plex propagation. The MATLAB implementation of an algorithm that
can identify and track communities in functional networks over time under uncer-
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tainty. This has been used by researchers at BU and MGH to understand the prop-
agation of seizures based on ECoG data. (2015)

Code and projects on GitHub at https://github.com/nathanntg

Programming

Languages (all with 5 or more years experience): C, C++, Swift (since release),
Python, MATLAB, JavaScript, PHP, SQL, CSS, HTML

Other technological proficiencies: Apache, MySQL (running a multi-server clus-
ter with 100GB data and 99.99% uptime), Memcache, Git version control


