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Summary

Unmanned aerial vehicles (UAV) are a tremendous resource for search and rescue mis-
sions, as they are able to collect high resolution imagery of large swaths of land with-
out the cost and manpower of human search parties. With the tremendous amount
of imagery that can be collected, a new bottleneck in the process has emerged as the
task of evaluating and identifying objects of interest, including people, clothing or
other details in these images is still predominantly a manual task. Automated color
anomaly detection can significantly expedite this process by identifying unexpected
colors likely associated with synthetic clothing or equipment.

Hyperspectral imaging, used in satellite and geographic exploration, has a strange
set of tools for anomaly detection. In this paper, we evaluate the applicability of
these hyperspectral techniques to search and rescue, as well as introduce a novel
algorithm that uses gaps in the principal component analysis to identify clusters of
anomalous pixels. In addition, we compare performance of algorithms across multiple
color spaces and across multiple types of environments to identify potential strengths
and weaknesses.

Existing algorithms offer a clear tradeoff between computational performance and
anomaly detection accuracy. Our proposed algorithm strikes a balance between these
tradeoffs, achieving high accuracy with relatively low computational intensity.
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1 Introduction

As the prevalence of unmanned aerial vehicles (UAV) increases in both search and
rescue and military missions, so too does the volume of imagery collected by the
onboard cameras. Human analysis of such imagery is both unreliable [1], given the
need to broadly analyze large fields of view, and impractical, given the number of
images produced. Instead, algorithmic analysis of images is employed to quickly
identify regions of interest in the imagery.

Given the unknowns regarding the visual appearance of the target (e.g., an in-
dividual in a search and rescue mission), the automatic processing must identify
anomalous regions in the image rather than implementing a more directed target de-
tection approach. Exploiting color information is especially well suited for identifying
outlying pixels in a large natural scene, as clothing and man-made objects will often
have distinguishing spectral signatures. Identifying such pixels with anomalous colors
can aid in both identifying the target or important information that may lead to the
target of a search and rescue mission. In this project, we aim to use spatial and
spectral data from a photograph to classify anomalies – that is, local pixels in which
the color patterns deviate from expectations identified in the global scene.

2 Literature review

Most of the research in the area of anomaly detection has focused on hyperspectral
images (used in medical and geological imaging) [2]. The Reed-Xiaoli (RX) detector,
which is broadly used and often considered a benchmark [3], compares individual
pixels to either a surrounding window or global statistics under the assumption that
the spectral data are distributed according to a multivariate Gaussian [4]. There
are many variations and adaptations of the RX detector based on the windowing,
allowing better adaptation throughout the image, such as local RX and quasi-local
RX [5].

Another approach to anomaly detection is the dual window eigen-separation trans-
form (DWEST) [6], which compares spectral projection matrices for an inner and
outer window to identify distinctive spectral statistics. Similar to this windowing
approach, the nested spatial window-based target detection (NSWTD) [7] and the
multiple-window anomaly detection (MWAD) [8] use multiple windows of comparison
to achieve background suppression or target whitening relative to varying contextual
scales, helping identify potential anomalies of variable size within the image.

Alternatively, the cluster-based anomaly detection (CBAD) approach segments
images into regions that maximize the conformation of the spectral distribution to a
Gaussian model [9]. Anomalies can then be identified based on values that deviate
from the distribution of the surrounding cluster.

In the limited literature that specifically addresses search and rescue, approaches
include increasing the saturation of rare hues and decreasing the saturation for com-
mon hues in order to assist human users in identifying anomalous colors [10]. More
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recent work has surveyed adapting some of the hyperspectral techniques, and found
that many of the detectors described above can be successfully implemented for search
and rescue, but the RX algorithm proved most robust and least dependent on pa-
rameter tuning [1].

Finally, in a previous EC520 project, students extended the above techniques,
which predominantly identify point anomalies, by incorporating spatial information
via Markov random fields [11]. Their results show an improvement when compared
to the RX detector approach. Yet their model was limited: it simply focused on color
(ignoring luminance) and had a high rate of false positives in photos that include
sharp transitions from one environment to another (ocean and shore, for example).

3 Problem statement

Due to the prevalence of UAV photography in search and rescue applications, there
is a need to improve analysis of wide angle aerial perspective high resolution imagery
to find clues that can lead to finding missing persons. Improvement in analysis of
this type of imagery in search and rescue applications will be measured by being able
to successfully identify anomalous objects/pixels within natural aerial perspective
scenes while (a) maximizing the area under the ROC curve for anomaly detection by
implementing algorithms on images with known anomalous pixels and (b) minimizing
processing time for the image analysis algorithms.

In section 4, we propose our solution to this problem. Subsections 4.1- 4.4 first sur-
vey existing anomaly detection algorithms developed for hyperspectral applications.
We then then introduce a new solution, PCAG, in subsection 4.5. In subsection 4.7,
we describe the color spaces are considered across all algorithms to prevent biases
against algorithms in one or more color spaces and to identify a color space most
suitable to search and rescue. Section 5 discusses further details of implementation
and evaluation across algorithms and color spaces. Section 6 presents and explains
the experimental results across algorithms, color spaces, scene types and algorithm
processing time performance to determine comparison data for (a) and (b) and eval-
uate our solution against existing solutions for (a) and (b). Lastly, conclusions and
future work recommendations are in section 7.

4 Solution

In order to improve detection of anomalous colors in search and rescue photos, we
survey a range of the hyperspectral anomaly detection algorithms, including some of
the most recent developments that achieve high accuracy through nested, overlapping
windows of analysis. In addition to simply implementing and comparing existing
algorithms, we compare algorithm performance for a range of color spaces (including
L*a*b, XYZ, YCbCr) as well as subsets of color spaces (such as the “a” and “b”
channels of L*a*b) to identify an analysis space that is most productive to search
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and rescue applications.
In addition to implementing existing algorithms, we propose a potential algorithm

called “principal component analysis gaps” (PCAG) that looks at gaps between clus-
ters along the vector of greatest variability for individual non-overlapping windows.

Each of the considered anomaly detection algorithms is described below.

4.1 RX

The benchmark in hyperspectral anomaly detection is the RX algorithm, developed
by Reed and Yu [4]. The detector takes the following form:

δRX(u[x]) = (u[x]− µ)TK−1(u[x]− µ) (1)

Where µ is the global sample mean and K is the global sample covariance matrix
(across spectra, or in this case, color components). This equation is equivalent to
the square of the Mahalanobis distance (a measure of distance between a single point
and a distribution). In its application to anomaly detection, it can be thought of as
a whitening process that suppresses the background.

We implement two versions of the RX algorithm. Global RX calculates the
global mean and global covariance for the full image, and applies equation 1 based
on these global measures.

The Local RX evaluates each pixel individually, calculating a local sample mean
and sample variance based on an outer window of pixels excluding a guard window
around the pixel being evaluated. The windows used in calculating the local RX
algorithm are illustrated in figure 1.

4.2 DWEST

The dual window-based eigen separation transform (DWEST) is an adaptive algo-
rithm that, like the RX detector, uses covariance to compare material differences
between an inner and outer window [6]. Unlike the RX detector, the differential
covariance matrix is calculated Kdiff = Kinner − Kouter, where Kinner is the covari-
ance matrix for the inner window and Kouter is the covariance matrix for the outer
window. A small subset of the eigenvalues of Kdiff will have positive values, and
the corresponding eigenvectors (Vi). These eigenvectors correspond with distinctive,
differential data structures and can be used to project the mean difference between
the windows (µdiff = µouter − µinner); this, in effect, achieves adaptive whitening by
suppressing background patterns from the outer window.

As an anomaly detector, this is written:

δDWEST(u[x]) =

∣∣∣∣∣∑
i

vTi µdiff [x]

∣∣∣∣∣ (2)
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Figure 1: Windowing used for the Local RX algorithm. Sample mean and covariance
are based on the outer window and used to evaluate the center pixel.

Where vi are the eigenvectors corresponding with positive eigenvalues of Kdiff .
We specifically implement a multi-window version of the DWEST algorithm [8],

where individual detectors are calculated according to equation 2 for multiple inner
window sizes. Figure 2 illustrates a range of inner window sizes. The final detector
represents the maximum of these individual detectors:

δMW−DWEST = max
i=1,...,N

{
δ

(i)
DWEST(u[x])

}
(3)

Specifically, our implementation uses an outer window of 11×11 and inner windows
of 1× 1, 3× 3, 5× 5 and 7× 7.

4.3 NSWTD

A relatively new hyperspectral algorithm is the nested spatial window-based target
detection (NSWTD), which builds on ideas inherent in the DWEST detector [7]. The
technique employees the orthogonal subspace projection [12]:

P⊥s = I− s(sT s)−1sT (4)

The orthogonal subspace projection matrix allows projecting a vector into a new
space that optimally minimizes the influence of the background signal s. This can be
seen by considering the image u[x] as a linear combination of desired signal v[x] (the
anomaly) and background s[x].
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Figure 2: Windowing used for the DWEST algorithm. The maximum anomaly de-
tector is calculated over multiple sets of inner and outer windows.

u[x] = v[x] + s[x] (5)

P⊥s u = P⊥s v + P⊥s s (6)

= P⊥s v + (I− s(sT s)−1sT )s (7)

= P⊥s v + s− s (8)

= P⊥s v (9)

The orthogonal subpsace projections are used in calculating a measure called the
orthogonal projection divergence, which measures the distance between two orthogo-
nal projections:

OPD(si, sj) =
√

sTi P
⊥
sj
si + sTj P

⊥
si
sj (10)
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The OPD measure can be used to compare spectral differences between two win-
dows:

δNSWTD(u[x]) = OPD(µinner[x], µouter[x]) (11)

Again, like the DWEST algorithm, this is specifically implemented via a multi-
window approach where individual detectors are calculated according to equation 11
for multiple inner window sizes. The aggregate detector is the maximum of these
individual calculations for a given pixel. The same window sizes from the DWEST
algorithm are used in this implementation.

4.4 MW-NSWTD

A further variation on the NSWTD algorithm is the multiple window nested window-
based target detection (MW-NSWTD) algorithm proposed in [8]. Like NSWTD, this
relies on the orthogonal projection divergence, but rather than simply comparing an
inner and outer window, uses three windows. The outer most window is used for
whitening (background suppression), and the algorithm classifies anomalies based on
the divergence in the projected (whitened) versions of the middle and inner windows:

δMW−NSWTD(u[x]) =
√
µinner[x]TP⊥µouter[x]µinner[x] + µmiddle[x]TP⊥µouter[x]µmiddle[x] (12)

The equation 12 closely resembles the previously defined function for OPD (equa-
tion 10), but uses the orthogonal subspace projection from the outer window to
measure the divergence between the inner and middle window.

Again, as with the last two algorithms, the detectors are calculated according to
equation 12 for multiple middle and outer window sizes (the inner window remains
fixed at one pixel). The aggregate detector is the maximum of these individual
detectors. Figure 3 illustrates the multiple versions of the windowing configuration
used for the detector.

4.5 PCAG

We introduce and evaluate a new algorithm that we call “principal component analysis
gaps” (PCAG). The anomaly detector looks at gaps between clusters along the vector
of greatest variability for individual non-overlapping windows. The algorithm works
by performing a principle component analysis across spectral components – a widely
used step in many anomaly detection algorithms [13] – on block of 15 × 15 pixels
(treated as a 1D vector, u[j]). The PCA yields eigenvectors – basis vectors describing
the direction of variability across the components or spectra. The algorithm identifies
the largest delta (hence the PCA “Gap” name) along each eigenvector that isolates
a potential set of anomalous pixels. Figure 4 shows a hypothetical, two-dimensional
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Figure 3: Windowing used for the MW-NSWTD algorithm. Many size outer and
middle windows are evaluated, while the inner window remains fixed (1× 1).

data set with eigenvectors superimposed, where each access represents one spectral
component. As anomalous pixels will inherently be offset from the majority of pixels,
there will be gaps along the dominant eigenvectors. The algorithm looks for the
largest delta that isolates between amin pixels and amax pixels, a computationally
inexpensive calculation. The isolated pixels are scored according to the sum of the
deltas along each eigenvector.

Where vi is an eigenvector of Cov(u[j]) and a column of the PCA decomposition
matrix W =

[
v1 . . . vN

]
, a sorted list of principle component scores is constructed

ai,j = u[j]Tvi such that ai,j ≤ ai,j+1. From this sorted list, boundaries are calculated:

b∗i = arg max
j∈[amin,amax]

ai,j+1 − ai,j (13)

∆i = ai,b∗i +1 − ai,b∗i (14)

Equation 13 considers one boundary. Similar calculation must be conducted for a
second potential boundary in the range [N − amax, N − amin]. Based on the identified



COLOR OUTLIER DETECTION FOR SEARCH AND RESCUE 8

Figure 4: Example of gap identification in a hypothetical two dimensional data set
(representing two spectral components). Gaps are identified along each vector.

boundary, pixels on the other side of the boundary will receive an anomaly score
represented as the sum of the deltas:

δPCAG(u[x]) =

{∑
i ∆i if x /∈ Wb∗i

0 otherwise
(15)

Where Wb∗i
represents those pixels within the boundaries identified by the gap

maximization process.
In essence, this detector scores a small subset of pixels based on the gap that

separates them from the block background (that is, the majority of the pixels in the
block) based on an orthogonal projection achieved through PCA. The two parameters
in this algorithm are simply the minimum (amin) and maximum (amax) anomaly sizes
in number of pixels. Note that the block must be larger than two times the biggest
anomaly.

In comparison with the existing algorithms, this approach is both fast and less
dependent on having roughly square anomalies (most hyperspectral algorithms de-
pend on a surrounding background window for comparison), but is less able to handle
anomalies in noisy regions (where there is a less clear gap along the vectors of vari-
ability).

We also implement a multi-window version of the PCAG algorithm (MW-
PCAG) that uses multiple iterations with varying window sizes to identify anomalies
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of different size. That is, the traditional PCAG algorithm is performed with 11× 11
windows to identify anomalies up to 50, 15 × 15 windows to identify anomalies up
to 100 pixels, etc. This allows smaller anomalies to be better identified relative to
local context. The maximum score for each pixel is then used as the overall detector
output.

4.6 PCAD

In addition to the above algorithm, we propose a variation that we call the “princi-
pal component analysis distance” (PCAD). Like the previous algorithm, it relies on
projecting blocks – again, 15× 15 pixels – into a new space determined by the PCA
of the spectral components. Rather than looking at gaps along the principal compo-
nents, this approach is built on the intuition that the likelihood a pixel is anomalous
is proportional to the distance to the kth nearest pixel along each PCA vector; that
is, a pixel is much more likely to be anomalous if there is a large distance between
it and the kth nearest pixel. Previous anomaly detectors have been built around
this approach by measuring the distance to the kth nearest pixel in multidimensional,
spectral space using a k-nearest neighbors algorithm [11]. By first projecting the spec-
tral components via PCA, this problem can be simplified and each dimension can be
treated independently, eliminating the need for the more computationally intensive
k-nearest neighbors computation.

Where vi is an eigenvector of Cov(u[j]) (the spectral covariance) and a column
of the PCA decomposition matrix W =

[
v1 . . . vN

]
, a sorted list of principle

component scores is constructed ai,j = u[j]Tvi such that ai,j ≤ ai,j+1. From this
sorted list, the distances to the kth nearest neighbor along each vector of variability
is calculated:

δPCAD(u[j]) =

√√√√ N∑
i=1

max(ai,j − ai,(j−k), ai,j − ai,(j+k))2 (16)

The calculation above is the Euclidian distance between pixel j and either nearest
pixel, either j + k or j − k, along each PCA vector of variability. The one parameter
of this detector is k, which must be selected such that it is greater than the largest
expected anomaly size (k > amax).

Much like PCAG, this algorithm will identify pixels that are substantially sep-
arated from the majority of the pixels in the block (and hence, less likely to come
from the same underlying distribution). But unlike PCAG, this approach is more
robust to noise as it is not dependent on having substantial gaps along the vectors of
variability.
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4.7 Color spaces

In addition to considering multiple hyperspectral algorithms, as well as our novel
algorithm, to perform anomaly detection in search and rescue photos, we also evaluate
algorithm performance across multiple color spaces. Existing literature on search and
rescue image processing has focused on color space manipulation to make anomalous
colors more identifiable [10]. Based on this idea, we evaluate algorithm performance
on a number of color spaces that may better emphasize color anomalies. Color spaces
considered include RGB, L*a*b, YCbCr, XYZ and uvL, as well as slight perceptual
variations on these color spaces such as xyY and u’v’L. In addition, we consider
smaller color spaces where luminance information is discarded, including the *a*b
channels from L*a*b, X and Z from XYZ, x and y from xyY, u and v from uvL and
u’ and v’ from u’v’L.

5 Implementation

Because there is no publicly available library of search and rescue scenes, we au-
tomated the generation of novel scenes by randomly superimposing color anomalies
(clothing) into natural scenes. Using a range of natural scenes (such as beach, desert,
mountain and forest photos), the process provides a large collection of suitable inputs
for comparing and contrasting algorithm performance. The set of scenes specifically
include photos with clear boundaries between regions of distinct texture. These scenes
were selected based on previous reports that some anomaly detectors struggle in such
an environment with sharp boundaries [11]. All anomalies are photos of clothing
manually edited to remove any pixels besides the article of clothing. Each anomaly
is resized to a total area of 45-90 pixels and rotated randomly. Anomalies are lumi-
nance adjusted to match the surrounding region of the scene more realistically. The
boundaries of anomalies are blended with the surrounding scene to more realistically
reflect likely search and rescue images. An example output of the anomaly generator
is excerpted in figure 5.

The considered algorithms and color spaces were evaluated over a range of gener-
ated scenes. The performance of each algorithm is visualized via a receiver operating
characteristic (ROC) curve. The area under the ROC curve (AUC) is used as a metric
to compare across algorithms and color spaces. Each algorithm was applied across
different natural scenes and different color spaces to assess relative advantages and
disadvantages. In this way, we hope to bring current hyperspectral anomaly detection
algorithms to bear in search and rescue.

In addition to evaluating the tradeoffs in accuracy for each algorithm, there was
substantial range in the complexity and, as a result, relative performance of each
algorithm. Many of the newer hyperspectral algorithms evaluate each pixel individ-
ually by running five ore more comparisons with the surrounding nested windows.
Alternatively, algorithms like global RX, PCAG and PCAD are able to run on large
block or full scenes, and hence run much more quickly. Our implementations of the
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Figure 5: Excerpt from larger scene showing two anomalies superimposed on a beach
photo. The full image used in the algorithm is approximately four times larger.

each algorithms have a run time range of between 15 seconds and 8 minutes. Given
the large range in performance, we also evaluate and compare relative tradeoffs of
algorithm detection in terms of computational complexity.

6 Experimental results

In the subsequent sections, we discuss the results, compare the seven considered
algorithms as well as evaluate relative performance across different color spaces and
environments.

6.1 Algorithms

Table 1 and figure 6 compare the AUC metric for the seven algorithms across a three
representative color spaces that achieved high performance based on twelve natural
scenes with randomly superimposed anomalies. These AUC values are calculated
across all twelve scenes by evaluating different global anomaly thresholds for each
algorithm and color scheme instead of averaging AUC values for individual scenes.
As a result, these results represent the expected performance on a range of back-
grounds, but results could potentially be improved by tuning thresholds to the scene
or environment.

The results show strong performance for many of the considered algorithms.
Global RX, which is often used as a benchmark for evaluating anomaly detection
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in hyperspectral imagery [3] outperforms the windowed Local RX and DWEST, but
performs slightly worse than NSWTD or MW-NSWTD. Our proposed PCAG algo-
rithm performs well, especially in the L*a*b color space. This aligns with how it
separates clusters of pixels in the three dimensional color space. PCAG does not
match RX or NSWTD in performance, but the added benefit of the multi-window
approach (MW-PCAG) further improves its performance relative to all algorithms.
MW-PCAG outperforms RX, but does not outperform NSWTD or MW-NSWTD
when only considering the AUC metric as seen in figure 6.

Our second proposed algorithm, PCAD, shows strong performance in RGB and
L*a*b color spaces, similar to the MW-PCAG detector. Surprisingly though, it’s
performance is compromised by the XYZ color space. Potentially, a MW-PCAD
implementation could achieve stronger results, but has not yet been implemented.

RGB L*a*b XYZ

Global RX 0.9890 0.9854 0.9665
Local RX 0.8280 0.9287 0.6506
DWEST 0.9477 0.9703 0.8278
NSWTD 0.9991 0.9980 0.9690

MW-NSWTD 0.9982 0.9974 0.9648
PCAG 0.9659 0.9733 0.9439

MW-PCAG 0.9928 0.9936 0.9525
PCAD 0.9845 0.9939 0.8329

Table 1: AUC results across all considered algorithms for three representative color
spaces.

6.2 Color spaces

Figure 7 show results of Global RX, NSWTD, and MW-PCAG across seven different
color spaces. As seen in the figure, RGB and L*a*b most consistently produce reli-
able results for these three algorithms, and Global RX and MW-PCAG work well on
YCbCr, with a slight bump in performance of MW-PCAG in YCbCr. This suggests
that in YCbCr, there are larger gaps along the primary component vectors between
anomalous pixels in an image relative to the distribution of pixels from natural back-
grounds. Other color spaces, even those tuned to human perception, such as xyY and
uvL, do not perform as well.

The initial results also suggest that simple RGB or L*a*b color spaces produce
consistently good results; other color spaces, even those tuned to human perception,
such as uvL, do not perform as well.

Previous anomaly detection implementations for search and rescue have ignored
the luminance component, suggesting it plays a minor or negligible role in such
anomaly detection [11]. In general, as seen in table 2, using only the channels dedi-
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Figure 6: AUC results across all considered algorithms for three representative color
spaces.

Global RX NSWTD MW-PCAG

RGB 0.9890 0.9991 0.9928
L*a*b 0.9854 0.9980 0.9936
XYZ 0.9665 0.9690 0.9525

YCbCr 0.9890 0.9592 0.9950
uvL 0.9903 0.8700 0.9698
xyY 0.9894 0.9022 0.9919
u’v’L 0.9903 0.8753 0.9857

*a*b 0.9775 0.9898 0.9922
XZ 0.9082 0.6808 0.8977

CbCr 0.9801 0.9703 0.9894
uv 0.9804 0.9851 0.9952
xy 0.8421 0.9472 0.9257

u’v’ 0.9804 0.9852 0.9948

Table 2: AUC results across all considered color spaces for three representative algo-
rithms.

cated to color in color spaces that separate luminance and color into separate channels
is not inherently beneficial to anomaly detection for search and rescue applications.
The Global RX algorithm benefits from having luminance information included in
the covariance matrix calculations in all color spaces. NSWTD performs poorly in
color spaces tuned to the sensitivities of the human visual system (and YCbCr) and
benefits from discarding luminance and only using color channels in these spaces. The
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Figure 7: AUC results across color spaces for three representative algorithms.

performance of NSWTD in RGB or L*a*b space achieves the best results, suggesting
that preprocessing the image or transforming the color space is unnecessary.

The higher performance of modern hyperspectral techniques in the RGB space
is indicative that the algorithms benefit from images where each channel contains
distinct, but statistically similar information that is equally relevant to the determi-
nation of anomaly versus non-anomaly.

MW-PCAG benefits from using only color data in uvL and u’v’L spaces, but not
in any other similar color spaces. In table 2, this benefit is shown to be a 0.0024
increase in AUC from RGB and a 0.0002 increase in AUC from YCbCr for using only
the uv channels of uvL color space. For such a minimal benefit, this only makes sense
to pursue if the image is given in uvL or u’v’L color space.

6.3 Scene types

Table 1 shows the general performance of each algorithm for an average search and
rescue image. In contrast, figure 8 breaks out the AUC performance in L*a*b space
for different types of images (examples are shown in figure 10 in the appendix). As
can be seen by the Global RX performance on the beach scenes, the global detector
does not perform as well on images with multiple regions with distinct background
statistics, but does perform very well on images with consistent backgrounds, such
as the ocean image. The NSWTD and MW-PCAG both perform consistently across
all of the images, with the NSWTD outperforming the PCAG in the AUC metric, as
discussed in subsection 6.1.
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Figure 8: AUC results across different scene types for three representative algorithms
using L*a*b color space.

6.4 Computation time

Figure 9 shows the average run time of all seven algorithms considered for a fixed
image size. The global RX detector, the PCAG algorithm and the PCAD algorithm all
have fast processing times. The desire for many applications will be to analyze many
images from an aerial sweep of an area to determine whether or not a person or clues to
a person’s whereabouts are in an image, which can be very time sensitive information.
This makes the time and performance considerations an important tradeoff for some
algorithms. The NSWTD outperforms the RX, PCAG and PCAD detectors in the
AUC metric, as does the MW-NSWTD, which performs slightly worse (-0.0009 in
AUC metric) than NSWTD, but 1.5 times faster. MW-PCAG performs 7.6 times
faster for a drop of only 0.0041 in the AUC metric from NSWTD. It can also be seen
why global RX is seen as a benchmark for comparison here as it achieves performance
extremely close to NSWTD (a difference in AUC of 0.0088 in their respective best
color spaces), yet the RX algorithm performs the calculation 162 times faster on
average.

Note that there are opportunities to optimize these algorithms further. We did
not do an in-depth investigation of the fastest implementations, although we did try
to streamline calculations. The differences in computation time accurately reflect
the relative complexity, given that DWEST, NSWTD and MW-NSWTD all involve
a number of calculations for each pixel based on several surrounding windows of
comparison for which eigenvalues or covariance matrices need to be calculated. Per-
formance improvements may be gained by implementation of integral images, but the
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initial calculations and memory requirements of integral images would likely minimize
the benefits of such an implementation.

Other potential avenues for improving performance include preprocessing the im-
ages. Research in the hyperspectral field has identified potential benefits in perfor-
mance by first using wavelet transforms prior to implementing anomaly detection
algorithms such as NWSTD [14].

Figure 9: Average algorithm execution time on a single CPU for images of size 1536×
1152.

7 Conclusions

Although results show that the NSWTD algorithm performs incredibly well in the
AUC metric, there is a clear tradeoff between processing speed and accuracy. As
mentioned before, the implementation of the NSWTD and MW-NSWTD here could
benefit from further optimization, but inherently these algorithms require a lot more
performance for individual pixel classification. Our analysis suggest that the PCAD
and MW-PCAG approaches strike a very good balance between RX and NWSTD in
AUC performance while maintaining an algorithm speed that approaches that of the
RX detector. Future work can be done in evaluating more optimized versions of the
NSWTD and MW-NSWTD algorithms as well as looking into clustering algorithms
such as k-means or EM clustering for anomaly detection.
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A Example scenes

The following image shows example natural scenes used in the training process as well
as the rough “classification” used in comparison of algorithms across environments.

(a) Arid (b) Beach

(c) Desert (d) Forest

(e) Mountain (f) Ocean

Figure 10: Representative images from each class of scene.


