
CONVOLUTIONAL NEURAL NETWORKS AS FEATURE
GENERATORS FOR NEAR-DUPLICATE VIDEO

DETECTION

L. Nathan Perkins

Boston University

Department of Electrical and Computer Engineering

8 Saint Mary’s Street

Boston, MA 02215

www.bu.edu/ece

December 7, 2015

Technical Report No. ECE-2015-05

Summary

With ever increasing online repositories of video content, accurate and fast near-
duplicate detection is important; it can help deter piracy and distribution of illegal
content, while improving user experience when searching existing video collections by
de-duplicating results and providing contextual data, such as links to similar videos
or helping to extract meta data by clustering content. Existing methods are a trade-
o↵ between frame-level accuracy, using complex spatial annotations as di↵erences of
gaussians, and computational e�ciency, using video-level annotation of color and mo-
tion. With the increasing power and feasibility of deep neural networks, they provide
a potential middle-ground, by providing a per-frame signature in terms of the domi-
nant classification while still being relatively performant.

In this implementation, pre-trained networks from the Ca↵e project, including AlexNet,
GoogleNet and the R-CNN networks are used to construct a searchable database of
video signatures, that can be queried by looking at the intersection of dominant fea-
tures across frames. Using an evaluation dataset of approximately 250 videos, the
R-CNN network is shown to produce a set of features that is resilient to common
distortions, such as small rotations, cropping, re-encoding and changes to color and
brightness. ROC curves show the network has a high degree of accuracy at matching
known videos and distorted videos, while rejecting novel content.

These results suggest that neural network-based near-duplicate detection is both
feasible and accurate. Yet the current implementation is constrained by inherent
limitations in the pre-trained networks, which were trained on a limited number of
labels and are sensitive to strong color or rotational changes. Future work will look
at training a novel neural network, as well as adapting the feature database to do
similar-video search and meta-data extraction.

i

Contents

1 Introduction 1

2 Literature review 1

3 Problem statement 2

4 Implementation 3
4.1 Deep neural networks . 3
4.2 Constructing video databases . 5
4.3 Querying the database . 6
4.4 Evaluation of algorithm . 9

5 Experimental results 10
5.1 Resiliency to distortions . 10
5.2 Accuracy . 10
5.3 Performance . 12

6 Conclusions 13

A Example distortions 16

B ROC curves for other networks 17

ii

List of Figures

1 Basic convolutional neural network structure 4
2 Data augmentation for training . 5
3 Example neural network inputs . 6
4 Results under various distortions . 11
5 Results showing accuracy for R-CNN network 12
6 Example distortions . 16
7 Results showing accuracy for other networks 17

iii

List of Tables

1 Results for example inputs . 7

iv

Near-duplicate detection using neural networks 1

1 Introduction

Both widespread adoption of modern smartphones, which are capable of video capture
and editing, and increasingly a↵ordable bandwidth and storage have contributed to an
explosion in the quantity and variety of videos that are posted online. And companies
like Google and Facebook are at the center of this video proliferation, acting as
repositories for organizing, tagging and searching through billions of hours of video
content. Every second, over five hours of new video are uploaded to YouTube. A
fundamental challenge in managing such repositories is the ability to compare video
similarity. Identifying similar videos helps reduce duplicate content, group related
videos, identify copyright violations and propagate meta data across content. To
be most useful, such similarity metrics must be robust to video encoding artifacts,
editing e↵ects (changes in saturation, lighting, cropping) and minor visual di↵erences
(such as network logos associated with di↵erent station a�liates on live television).
Depending on the exact application, it may also be beneficial to have an algorithm
capable of identifying similar video sequences captured from di↵erent vantage points,
enabling stitching together video of breaking events. This area of work and algorithm
development is known as near-duplicate video detection or retrieval.

2 Literature review

Algorithms for near-duplicate detection and retrieval generally followed two broad
approaches. In those cases where speed is of primary importance, algorithms often
rely on global features such as motion, intensity and color histograms. These global
feature vectors can be calculated for segments or full video clips, and similarity can
be quantified by looking at correlations either on a moving average basis or a global
basis [13, 4]. These global calculations are extremely e�cient and are robust to color
distortion and coding di↵erences, but are not well suited to identifying similarities
in a short segment of a longer video (for example, a remix video taking scenes from
many movies) and are unable to identify looser measures of similarity, such as footage
from multiple angles of the same event.

Alternatively, in cases where precision and resilience to a broad variety of distor-
tions is necessary, slower algorithms have been implemented by adapting techniques
from image analysis [9, 6], where key points are identified in an image through a
di↵erence of Gaussians (DoG) and those that persist at multiple scales of analysis
are used as a feature vector for describing the image. These key points can then be
compared across images, and are robust to scaling, shearing and rotating. Many vari-
ations on this approach have been used, considering various feature vectors, such as
SIFT [1], various methods of assessing feature correspondence, such as entropy mea-
sures in feature alignment [14, 16, 12], and various techniques for indexing, storing
and searching over large datasets of feature vectors [1].

These two approaches make tradeo↵s across the computational e�ciency and the
robustness of the algorithm to identify similarity across variations in the video, rang-

Near-duplicate detection using neural networks 2

ing from straight forward changes in coding, coloration and saturation to much more
complex changes such as rotation, distortion and manipulation (derivative work).

3 Problem statement

An active and promising area of research in machine learning and especially ma-
chine vision has been the application of deep neural networks. Over the last several
years, deep neural networks have both achieved the most substantial gains and the
best overall scores in the ImageNet Large Scale Visual Recognition Challenge [10].
Specifically, these high performing deep neural networks use a structure known as a
convolutional neural network where feedforward connections are tiled to convey infor-
mation about overlapping regions of the image, similar to the convolution operation,
which provides a flexible and scale-invariant framework for classifying images [7, 2].
Although the training of these neural networks is immensely complex and often relies
on GPU parallelization, the evaluation of the trained neural network is very e�cient
and often consists of a series of matrix multiplications and nonlinear scaling opera-
tions. The output of these convolutional neural networks can potentially provide a
rich and complex description of a frame.

The goal of this project is to adapt image classification neural networks to the
problem of near-duplicate detection, by annotating a sequence of frames according to
dominant features. Such features act as a summary of frame content in a way that
should be robust to cropping, scaling, coloration and noise, while not requiring the
local annotation, processing and comparison inherent in key point methods. Existing
research has used neural network features to a similar end, to create a descriptive
binary hash that aids in fast retrieval of images [8]. The hope is that this approach
will provide a powerful middle ground between existing algorithms, able to identify
a greater range of video distortions without the cost inherent in existing algorithms
that use local, spatial features.

To implement this algorithm, I will rely on already trained neural networks (given
the computational and data demands of performing the training) [5]. For the project,
I will build, to the extent possible, a broad corpus of video, including many artificial
distortions (including changing saturation, rotating video, cropping frames, adding
noise, recompressing and resizing) of original videos. Videos will be annotated ac-
cording to output vectors from the neural networks. In addition to considering the
final output (which tends to have softmax outputs to highlight a dominant category),
I will evaluate using intermediate values of the neural network as potential feature
vectors. Those frames that have substantial discontinuities in the feature vector when
compared with the prior frame will be denoted as keyframes. In order to query the
corpus, a query video will be similarly processed and the database will be searched
for a similar progression of keyframe feature vectors.

This approach will be evaluated for performance (ability to use artificially dis-
torted videos to find the original), which is consistent with techniques used by others
to evaluate near-duplicate detection [15]. In addition, a few di↵erent trained neural

Near-duplicate detection using neural networks 3

networks will be used as sources of feature vectors, to understand the impact the
underlying network has on the performance of the near-duplicate detection. Finally,
I will collect performance data both on the process of building the corpus (extracting
feature vectors) and on the process of querying the corpus (through profiling specific
operations in time on a single machine), although my focus will be more on the pro-
cessing of the video rather than the e�ciency of storing and querying feature vectors
(which has its own host of computational challenges). These metrics will help eval-
uate whether deep neural networks provide meaningful feature vectors that can be
used in the classification and evaluation of near-duplicate video content.

4 Implementation

4.1 Deep neural networks

Initial work focused on simply compiling and linking the Ca↵e framework [5], which
has a complex set of dependencies including BLAS for linear algebra, OpenCV for
image processing and NVIDIA CUDA for GPU calculations. Ca↵e provides a flexible
framework, including Matlab and Python interfaces, to train and process deep neural
networks. In addition, Ca↵e provides a “model zoo” with pre-trained models, meant
to reduce barriers to usage and avoid energy and time intensive network training.
Using the Matlab interface and pre-trained models, I was able to successfully use four
networks to perform image classification using novel images. Initial work focused on
four of the more commonly used networks that they distribute: Ca↵eNet, AlexNet
[7], R-CNN [3] and GoogLeNet [11]. The networks were trained using a research
data set that is part of the ImageNet Large Scale Visual Recognition Challenge [10],
which includes over 10 million images annotated with over 10,000 labels. Because of
similarities between Ca↵eNet and AlexNet in both architecture and training, Ca↵eNet
was excluded from subsequent work.

Each network is a variation on the deep, convolutional architecture, with inputs
representing a color image and outputs representing potential labels for the image
content. Although each network varies in the specifics of its architecture, all tend
to use 15 or more “layers,” where each layer has a set of nodes that take weighted
inputs from all or a subset of nodes in the previous layer, and all tend to follow a
common structure as shown in Figure 1. The term convolutional refers to a repeti-
tive, tiling organization to projections usually found in the initial layers that mimics
the convolution operator and helps achieve the scale- and rotation-insensitivity of the
networks. After the convolutional layers, the networks tend to have pooling layers
which perform non-linear downsampling that provides a level of translational invari-
ance and decreases the complexity of the learning by downsampling the feature space
[7]. Following the pooling layers, the networks will have one or more fully intercon-
nected layers, where all nodes are connected to all nodes in the previous layer; the
fully interconnected layers associate down-sampled convolutional features with labels
in the training data. Finally, the networks have a softmax layer at the end, which

Near-duplicate detection using neural networks 4

normalizes network outputs in a way that generally constrains the output to a single,
dominant label or classification. To give a sense of scale, AlexNet has 650,000 neu-
rons and over 60 million parameters. Training of the network is a slow process (often
many days) and relies heavily on GPUs to perform parallel calculations to allow for
regularized gradient descent.

Figure 1: Although the specific strucutre and implementation details can vary widely,
most convolutional neural networks for image recognition follow similar broad strokes.
The initial layer acts as a convolution, tiling the image and learning kernels. Sub-
sequent max pooling layers perform nonlinear downsampling. One or more densely
or fully connected layers learn associations between features and labels. Finally, a
softmax layer servers to squash the outputs and have one dominant label.

The networks accept square images of size 224 ⇥ 224 pixels in RGB colorspace
after mean subtraction (where the mean is a square image representing the mean
color across all images in the ILVRC training set; in actuality, this is close to a
uniform gray image). In order to aid both the training process and the performance
on the challenge, training images are augmented by cropping and/or flipping the
original images ten times. Data augmentation is achieved by extracting windows
at the top-left corner, the top-right corner, the bottom-left corner, the bottom-right
corner and the center of the image, as well as horizontally flipped variants of each
(see Figure 2). This augmentation enables a much larger corpus of training data by
creating distinctive variations on the original image, and helps establish the robustness
of the neural networks.

In order to validate that the networks are performing correctly, I tested a handful
of images that were outside of the training set. Four example images are shown in
Figure 3. Each image was fed into the AlexNet network, which produced scores corre-
sponding to 1,000 labels from the training process. Table 1 shows the top five labels
and scores as identified by the network. The network performs well at identifying
familiar images, such as the elephant, guitar and lamp. But when the network is
presented with an image that does not match any of the known labels, such as the
crown, the results are less meaningful.

Performance-wise, initial tests showed a processing time of about 96ms per image
when using the CPU.1 Such performance is prohibitive for processing a large corpus of
videos. In order to improve performance, the neural network processing was adapted
to use the GPU where the per frame time was lowered to 50ms. Part of this latency
reflects communication and memory transfer between the CPU and GPU. In order to

1Evaluations were performed on a 2013 MacBook Pro with a 2.6 GHz Intel Core i7 CPU and an
NVIDIA GeForce GT 750M 2048 MB GPU.

Near-duplicate detection using neural networks 5

Figure 2: Training images are augmented by resizing to 256⇥256 pixels, then extract-
ing five regions of 224⇥224 pixels, including the four corners and center. Horizontally
flipped variants of each window are also used.

further increase performance, Ca↵e o↵ers the ability to arbitrarily parallelize networks
through a “resize” operation (essentially duplicating the underlying network) to allow
simultaneous processing of images. Based on this, it is possible to process many frames
in a batch, which reduces the per frame time to 9ms (using batches of 30 frames).
Such performance gains enable building a nontrivial corpus of videos for testing and
evaluation purposes.

4.2 Constructing video databases

Equipped with the three deep neural networks (AlexNet, GoogleNet and R-CNN) and
an optimized, batch-oriented process for extracting features from images, the next
step was to construct a database of videos and features. Approximately 250 short
videos (each with a duration less than five minutes) were collected from YouTube to
serve as both a training and testing dataset. In order to maximize the e↵ectiveness
of the selected neural networks, I opted to use videos that resemble the training set.
To do this, videos were found by searching YouTube for one or two labels found in
the training database (such as “elephant trumpet”), as such videos will likely contain
imagery that resembles the training set. Identified videos are clipped to a maximum
length of one minute. Each video was processed frame by frame. Frames were resized
and mean-subtracted, then processed by the neural network to produce a correspond-
ing feature vector for the frame. These initial datasets of features were 1-2GB total
and provided a dense feature representation of the frame-by-frame progression of the
videos.

In order to reduce the feature set to a more salient subset that can be quickly
searched, frames with feature vectors that were substantially similar to the prior
feature vector were discarded. Frames are considered similar if they have the same h

Near-duplicate detection using neural networks 6

(a) Elephant (b) Guitar

(c) Lamp (d) Crown

Figure 3: Example images used to test the neural networks classification. The crown
image was specifically selected as there is no corresponding label in the training set.

highest scoring labels in the same order. This created a sparser sampling of features
at keyframes; the threshold for discarding features was selected to have a maximum
of approximately two features per second (h = 3). This process was repeated for all
three networks described above, as well as for modified versions of the networks after
removing the final softmax layer that produces a dominant label. These six databases
(one for each network, AlexNet, GoogleNet and R-CNN, and for modified versions
of each network excluding the final softmax layer), each containing a few hundred
videos, provided a corpus that allowed for evaluating relative scores of test videos
and identifying the precision of matches of the near-duplicate detection algorithm.

4.3 Querying the database

Having constructed the corpus of videos, the next step is to provide functionality to
input an unknown video and find, if it exists, the closest match in the database and
a score representing the similarity between the videos. All input videos will undergo

Near-duplicate detection using neural networks 7

Elephant Guitar
Label Score Label Score

African elephant 0.707 acoustic guitar 0.983
tusker 0.192 electric guitar 0.011
Indian elephant 0.101 pick 0.003
water bu↵alo 0.0 cello 0.001
warthog 0.0 violin 0.001

Lamp Crown
Label Score Label Score

lampshade 0.532 sax 0.729
table lamp 0.468 perfume 0.092
water bottle 0.0 candle 0.020
saltshaker 0.0 throne 0.019
pop-bottle 0.0 cornet 0.016

Table 1: Classification results from AlexNet using four example input images. The
crown image was specifically selected as there is no corresponding label in the training
set.

the same process of extracting features, by first passing each frame through the deep
neural networks and then downsampling the feature vectors to a sparse representation
based on keyframes. This sparse representation is then equivalent to that stored in
the databases described above.

4.3.1 Euclidian-distance-based querying

Three distinct strategies were considered for querying the database. The first strat-
egy used the Euclidian distance between keyframe features in the query video and
all keyframe features stored in the database, where each feature is simply a vector
representation of the output of the network – that is, the scores associated with each
label. To perform the query, the system uses the feature vector corresponding with
the first keyframe in the query video to finds the ten closest, in terms of Euclidian
distance, keyframe features in the database. These ten closest feature vectors pro-
vide initial matches, as a close correspondence suggests that the frames have similar
characteristics to the first frame of the query video. For each of these initial matches,
the program compares the feature vectors associated with subsequent keyframes in
both the query video and the potential matching videos. That is, for each subse-
quent keyframe in the query video, the system finds the closest keyframe in each of
the potential matching videos, again by Euclidian distance between feature vectors.
Because each keyframe is matched separately, they may not follow the same tempo-
ral progression; as a result, a penalty is applied if the matched keyframes are not
temporally sequential.

Near-duplicate detection using neural networks 8

Each potential matching video is scored according to the distance between features
describing the query video and features describing the video in the database:

Sk =
1

r

rX

i=1

min
l

a(l, i)

vuut
nX

j=1

(fk,j(l)� fq,j(i))2,

where r is the number of frames in the query video, n is the number of features
returned by the neural network, fq,j(i) is feature j for the query video at frame i, fk,j(l)
is the feature j for the database video k at frame l, and a(l, i) is a scaling factor that
penalizes the score if the order of the keyframes matches are not temporally sequential.
If matched keyframe l comes after the previously matched keyframe, then a(l, i) = 1,
otherwise a(l, i) = ↵ > 1. This calculation will result in smaller scores for query
and matching videos that have keyframes where the Euclidian distance between the
feature vectors is low, and where the matching keyframes follow a similar sequential
progression. In this case, the most likely match is that with the lowest score.

4.3.2 Order-based querying

Given some disadvantages to the above approach, which is computationally expensive
(requiring many Euclidian distance calculations) and has some key limitations in its
assumptions (specifically, it assumes that the full query video will appear within the
matched video in the database and fails to do partial matches), a second strategy
was developed for querying the database. Instead of using the full feature vector,
this method relies on the order of the labels returned by the neural network. Much
like the earlier tables showing the top labels for sample images (Table 1), the order-
based query method turns the network output into a feature vector of dominant labels
preserving the top three labels in order. Each keyframe has a feature vector of top
labels, such as [l1, l2, l3] where l1 is the 1st most likely label based on the output of the
neural network. This further reduces the complexity of the feature space, representing
each video frame as a small selection of labels.

To use the order-based query method, the query video is similarly converted to
a series of unique label orderings. The database is searched by looking for a frame
with the same three labels, in the same order, as the first frame of the query video.
If no match is found, the first frame of the query video is discarded and the process
restarts, allowing for matching a segment of the query video. The query process
will continue to match frames as long as the unique label order of subsequent frames
continues to match, allowing some partial matches, where only one or two of the
labels match. The number of partial matches is tunable to change the strictness of
the results returned. A score is generated by counting the number of matching labels
per frame and normalizing by the number of frames in the query video.

Near-duplicate detection using neural networks 9

4.3.3 Intersection-based querying

Initial tests of the two methods above suggest strong performance for querying using
the original videos, but performance dropped quickly with small distortions to the
video. Small video distortions would create divergences in the ordering of labels or
noise, especially in frames that were unlike the training set (text, animations, cross-
fades, etc). A third method was developed, seeking to make the querying process
more resilient to noise. Like the order-based query method, the query process looks
for a frame with the same dominant labels in the same order as the first frame in
the query video. For each match, the query looks at the overlap between subsequent
labels in the query video and the matched video in the database. Matches are scored
based on the relative overlap of the labels and based on how many of the labels appear
in the same order. Scoring is a weighted mix of these two measures:

S~m = ↵
|~q \ ~m|
|~q [~m| + (1� ↵)

min(|~q|,|~m|)X

i=1

�(~q[i]� ~m[i]),

where ~q is the vector of dominant labels for the query video (i.e., 1st label of 1st

keyframe, 2nd label of 1st keyframe, 3rd label of 1st keyframe, 1st label of 2nd keyframe,
. . .), ~m is the vector of dominant labels for the matching video, ↵ is a tuning pa-
rameter that prioritizes either the similarity or the order of labels that occur in each
video and | · | is the number of elements in a set. As a result, |~q \ ~m| represents the
number of labels common to both the query and the matching video, while |~q [~m|
represents the total number of labels in both videos.

This intersection-based query method proved to be both extremely computation-
ally e�cient and resilient to noise and distortions in the video, and hence was used
for all subsequent analysis.

4.4 Evaluation of algorithm

In order to evaluate the viability of both using deep neural network features as de-
scriptors and the querying techniques, distorted versions of videos were generated
using a range of distortion schemes, including resizing, recompression, cropping, ro-
tating, brightness/saturation modifications and changes to the coloration. Examples
of each distortion are shown in the appendix in Figure 6. Two evaluation schemes
will be used. For each type of distortion, the resilience of the algorithm will be mea-
sured to see both whether it is able to match the distorted video and to see how the
score decreases in response to further distortion. This will assess the robustness of
the algorithm to intentional or unintentional video distortions and help assess specific
strengths and weakness of the algorithm.

As a more comprehensive evaluation, the algorithm will be applied to a range
of minimally distorted videos (akin to distortions seen in piracy, such as cropping,
changes to color and brightness and recompression), including distorted versions from

Near-duplicate detection using neural networks 10

the original corpus as well as distorted versions of novel videos. The results from this
process provide an indication about how the threshold used to determine a match
a↵ects the number of false positives (incorrectly matched videos) and false negatives
(videos that fail to match). This can be used to construct a general ROC curve
that will describe the overall recall and precision of the neural network-based near-
duplicate detection algorithm.

5 Experimental results

5.1 Resiliency to distortions

To better understand the robustness of using neural network features to perform near-
duplicate detection, distorted versions of the videos used to construct the database
were used as query inputs. The near-duplicate detection algorithm was assessed based
on the ability to find the correct match and the score returned for the correct match.
Figure 4 shows the results under various distortions.

As an initial verification of the premise, the near-duplicate detection was assessed
after re-encoding videos. The algorithm was always able to match the videos and did
so with a relatively high score, suggesting that the method is functioning as expected.

The results also show resilience of the algorithm to resizing, even when resizing a
video to 1

4 of its original size. Similarly, encouraging results appear when cropping
videos horizontally (only horizontal cropping was used given the aspect ratio of the
videos in the training set). After cropping up to 45% of the pixels from the video,
the algorithm is able to match videos and returns a relatively high score.

The algorithm is less performant after rotating videos. Small rotations, up to 15�,
still tend to match the original video but have a low score. Larger rotations cause
the algorithm to struggle to match the video.

Finally, it is interesting to observe that the algorithms are sensitive to the color and
contrast seen in the videos. Color distortions (achieved by stretching the histogram
for each color channel) reduced the accuracy of the matches by the algorithm, while
converting videos to black and white substantially reduced the accuracy and score of
the matching process. This suggests that the neural networks rely on color channel
information to perform classification.

Broadly, these results show that the neural network-based near-duplicate detection
algorithm performs well under a number of distortions, such as resizing, re-encoding,
cropping and even small color or rotation changes. More extreme changes, such as
substantial rotation or color filters, impair the method’s ability to recognize video
clips.

5.2 Accuracy

The charts and figures shown in the previous section show the resiliency of the
network-based near-duplicate detection in terms of the scores returned, but do not

Near-duplicate detection using neural networks 11

(a) Re-encode (b) Resize

(c) Crop horizontally (d) Rotation

(e) Increase saturation & contrast. (f) Conversion to B&W.

Figure 4: Results show the scores returned by di↵erent neural networks using the
intersection-based query method when querying using distorted versions of training
videos.

provide a comprehensive measure of the accuracy of the method. In order to get a
sense of accuracy, Figure 5 depicts the receiver operating characteristics (ROC) curve
reflecting the accuracy of results when querying the database. The curve is generated

Near-duplicate detection using neural networks 12

by using a query set of known videos, known but mildly distorted videos (re-encoded,
minimally cropped, minimally recolored) and novel videos. The algorithm is consid-
ered accurate if it matches the known videos and the known but mildly distorted
videos, while not incorrectly matching the novel videos. The curve is generated by
varying the threshold used for determining a match.

(a) Last layer (b) Second-to-last layer

Figure 5: ROC curves showing accuracy of matching using either the second to last
or last layer of the R-CNN network and the intersectio-based query method.

The R-CNN network proved to be most e↵ective for near-duplicate detection,
likely due to its somewhat more flexible and resilient design. The network is designed
to process extracted regions from larger images and is hence more resilient to stretch-
ing and other distortions [3]. ROC curves for the GoogleNet and AlexNet networks
are shown in Figure 7 in the appendix.

The ROC curves for the R-CNN network indicate a high-accuracy rate; it is able
to match both known and distorted videos without incorrectly matching novel videos.
The R-CNN network has a slightly di↵erent architecture, forgoing the normal softmax
final layer. The second to last layer instead encodes features based on a larger set of
classifiers (over 4,000). This di↵erent architecture and larger number of layers likely
accounts for the improved accuracy, especially when using the second-to-last layer as
the source of our feature sets.

5.3 Performance

Although this project did not heavily focus on optimizing the code, and there are
surely substantial performance gains possible in implementing a better optimized or
hash-based query method, the computational performance of the method is an im-
portant factor to assess. The hope is that the network-based near-duplicate detection
will provide a tradeo↵ between the computational complexity of frame-level complex
feature annotation and the e�ciency of video-level summaries such as histograms.

Near-duplicate detection using neural networks 13

Despite the complexity in training the neural networks, applying the networks
to novel frames, especially when leveraging the GPU and the batching operations
described in the implementation section, is fast, with a per-frame time of less than
9ms. Even with this low per-frame time, this is still the slowest part of querying the
database, as the query video must be similarly processed to extract features. Given a
one minute query video, this means over 16 seconds of processing to identify features.

Once the feature vector has been extracted, querying the database is a fast process
that benefits from standard computational tools for indexing and querying data, as
the query process involves looking for a specific set of labels. Given the small data set
and a naive implementation of this search process, querying took 7-43ms, depending
on the number of potential matches.

Overall, these performance characteristics seem promising for a real-world imple-
mentation. Videos need only be processed for features once, and further optimizations
to the query process, such as using an indexed data structure, would allow scaling to
much larger datasets.

6 Conclusions

The results from the proposed neural network-based near-duplicate detection algo-
rithm suggest that it is both a feasible and e�cient mechanism for performing near-
duplicate detection. After the somewhat computationally expensive process of feature
extraction, videos can be described and stored as a progression of dominant labels.
This progression of labels is readily queried, appears robust to distortions, includ-
ing re-encoding, resizing, cropping, small rotations and minor changes to coloration,
and is accurate over the limited data set tested for this project, both in terms of
identifying known and distorted videos as well as rejecting novel videos.

The best results were achieved using the second-to-last layer of the R-CNN neural
network, which produces a feature vector of 4,096 features per frame. This feature-
space can be downsized by discarding those frames that are not substantially di↵erent
from the prior frame, producing a sparse representation of the content of the videos.

Despite the initial success shown, more work is needed. The analysis here focused
on videos that were tangentially related to the training sets used for building the
networks. A more robust solution would look to build a new deep neural network
specifically suited to the problem-space using a broad sampling of video frames for
training. Such a network would be better able to encode video-specific visual features,
such as text, e↵ects (such as cross-fades) and specific visual styles (such as animation).

Although this project focused on matching videos and distorted versions of videos,
the data set built for this project can be adapted to a variety of other problems, such
as genre detection or similar-video clustering. Future work will involve consolidating
features across a video into a single set of dominant features that describe the video as
a whole. Such features can be used to find similar content or automatically annotate
meta-data, such as genre.

Broadly, this project suggests that the success of deep neural networks in the

Near-duplicate detection using neural networks 14

space of image search can be readily adapted to video labeling and search. This work
provides proof of principle by building an accurate and robust-to-distortion near-
duplicate detection algorithm using features extracted from videos using pre-trained
neural networks designed for image classification.

References

[1] O. Chum, J. Philbin, and A. Zisserman, “Near Duplicate Image Detection:
min-Hash and tf-idf Weighting,” in British Machine Vision Conference 2008,
pp. 50.1–50.10, British Machine Vision Association, July 2008.

[2] D. Erhan, C. Szegedy, and A. Toshev, “Scalable object detection using deep
neural networks,” Computer Vision and . . . , 2014.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Computer Vision and

Pattern Recognition, 2014.

[4] A. Hampapur, K. Hyun, and R. M. Bolle, “Comparison of sequence matching
techniques for video copy detection,” Electronic Imaging 2002, vol. 4676, pp. 194–
201, Dec. 2001.

[5] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Ca↵e: Convolutional Architecture for Fast Feature Em-
bedding,” arXiv preprint arXiv:1408.5093, 2014.

[6] Y. Ke, R. Sukthankar, and L. Huston, “E�cient near-duplicate detection and
sub-image retrieval,” ACM Multimedia, 2004.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” pp. 1097–1105, 2012.

[8] K. Lin, H. F. Yang, J. H. Hsiao, and C. S. Chen, “Deep Learning of Binary Hash
Codes for Fast Image Retrieval,” in Proceedings of the IEEE . . . , 2015.

[9] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” In-

ternational journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[10] O. Russakovsky, “ImageNet Large Scale Visual Recognition Challenge,” Inter-

national journal of computer vision, pp. 1–42, Apr. 2015.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, and S. Reed, “Going deeper with
convolutions,” arXiv.org, 2014.

[12] H.-K. Tan, C.-W. Ngo, R. Hong, and T.-S. Chua, Scalable detection of partial

near-duplicate videos by visual-temporal consistency. New York, New York, USA:
ACM, Oct. 2009.

Near-duplicate detection using neural networks 15

[13] J. Yuan, L.-Y. Duan, Q. Tian, S. Ranganath, and C. Xu, “Fast and Robust
Short Video Clip Search for Copy Detection,” in Advances in Multimedia Infor-

mation Processing - PCM 2004, pp. 479–488, Berlin, Heidelberg: Springer Berlin
Heidelberg, Nov. 2004.

[14] W.-L. Zhao and C.-W. Ngo, “Scale-Rotation Invariant Pattern Entropy for
Keypoint-Based Near-Duplicate Detection,” IEEE Transactions on Image Pro-

cessing, vol. 18, pp. 412–423, Dec. 2008.

[15] X. Zhou, X. Zhou, L. Chen, A. Bouguettaya, N. Xiao, and J. A. Taylor, “An Ef-
ficient Near-Duplicate Video Shot Detection Method Using Shot-Based Interest
Points,” IEEE Transactions on Multimedia, vol. 11, pp. 879–891, July 2009.

[16] J. Zhu, S. C. H. Hoi, M. R. Lyu, and S. Yan, “Near-duplicate keyframe retrieval
by nonrigid image matching,” in Proceeding of the 16th ACM international con-

ference, (New York, New York, USA), pp. 41–50, ACM, Oct. 2008.

Near-duplicate detection using neural networks 16

A Example distortions

(a) Original (b) Color contrast adjustment

(c) Original (d) Horizontally cropped

(e) Original (f) Resized image

(g) Original (h) Rotation

Figure 6: Representative distortions shown for frames. The original frame is on
the left, the distorted frame is on the right. Two additional distortions were used:
conversion to black and white and re-encoding using MPEG or Motion JPEG 2000.

Near-duplicate detection using neural networks 17

B ROC curves for other networks

(a) Last layer of AlexNet (b) Second-to-last layer of AlexNet

(c) Last layer of GoogleNet (d) Second-to-last layer of GoogleNet

Figure 7: ROC curves showing accuracy of matching using either the second to last
or last layer of the AlexNet and GoogleNet networks and the intersect-based query
method.

